
Android App Analysis
University of Paderborn

Warburger Str. 100
33102 Paderborn

PAndA2

Final Documentation

Paderborn, March 31, 2016

Authors:

Abhinav Solanki Anand Devarajan
Arjya Shankar Mishra Fabian Witter
Felix Pauck Monika Wedel
Pham Thuy Sy Nguyen Ram Kumar Karuppusamy
Sriram Parthasarathi

Contents

1 Introduction 1

2 Architecture Overview 1

3 Implementation Details 3
3.1 Client . 4

3.1.1 Graphical User Interface (GUI) . 5
3.1.2 Command Line Interface . 9
3.1.3 Loading and Storing the Result . 17

3.2 CoreServices . 18
3.2.1 XMLParser . 18
3.2.2 The Interface DataStorage . 19
3.2.3 Statement Analyzer . 20

3.3 Enhancer . 27
3.3.1 EnhancedInput . 27

3.4 Intra-App Permission Usage Analysis . 29
3.4.1 Enhancer Support . 30
3.4.2 GraphGenerator: Analyze Explicit Intents 31
3.4.3 Analyzer: Assign Permission-Groups 32
3.4.4 Result Representation . 33

3.5 Inter-App Permission Usage Analysis . 35
3.5.1 Enhancer Support: Collect Previous Results 36
3.5.2 GraphGenerator: Analyze Implicit Intents 37
3.5.3 Analyzer: Assign Permission-Groups 38
3.5.4 Result Representation . 39

3.6 Intra-App Information Flow Analysis . 41
3.6.1 Soot framework support . 42
3.6.2 GraphGenerator: Building the Program Dependence Graph 47
3.6.3 Analyzer: Finding Information Flow Paths 53
3.6.4 Result Representation . 56

4 Extensibility 60
4.1 Adding a New Analysis . 60
4.2 Integrating a new User Interface . 61
4.3 Changing API . 62

5 Quality Assurance 63
5.1 Types of Testing . 65

5.1.1 Black box / Functional Testing . 65
5.1.2 White box testing with Unit Testing 65

Contents Contents

5.2 Tools . 68
5.2.1 EclEmma . 69
5.2.2 PMD . 71
5.2.3 CodePro . 74

5.3 Automatic Test Executor . 75
5.3.1 Workflow of Automatic Test Executor (ATE) 77
5.3.2 Structure of Test Cases: . 78
5.3.3 Result Output: . 80

6 Evaluation 80
6.1 Intra- and Inter-App Permission Usage Analysis 83

6.1.1 Custom Apps: Description . 83
6.1.2 Custom Apps: Evaluation . 86
6.1.3 Real-World Apps: Evaluation . 89

6.2 Intra-App Information Flow Analysis . 93
6.2.1 Custom Apps . 94
6.2.2 DroidBench . 96
6.2.3 Real-World Apps . 98

6.3 Feature Comparison . 100

7 Future Work 101
7.1 Improving Existing Analyses . 101
7.2 Extending the Set of Analyses . 102
7.3 Improving the Framework . 102

8 Conclusion 103

List of Figures 106

References 107

III

2 ARCHITECTURE OVERVIEW

1 Introduction

The operating system Android becomes more and more widespread in these days. The number
of Android applications available in the Google Play Store grows continuously. But with
increasing number of Apps the danger of malicious Apps that try to cheat the user grows, too.
Therefore, it becomes more and more necessary to investigate the applications and to find out
whether they are trustworthy or not.

To do so we developed PAndA2 . The name PAndA2 reflects the meaning Paderborn
Android App Analysis. Our tool offers a framework for analyzing Android applications in
which different analyses can be integrated. Together with the tool we already deliver three
different analyses and provide the possibility to easily integrate more of these. Moreover, our
tool offers a graphical user interface for a good usability.

In the following document we give some details about PAndA2 and the three analyses.
Therefore, in Section 2 we shortly remain the reader of the architectural structure of our tool
which was described in more detail in the Architecture Document. The next section describes
details about the way we implemented PAndA2 . Here the main focus rests on concepts and
algorithms used. It consists of six subsections of which Section 3.1 describes the Client
component and Section 3.2 the CoreServices. Afterwards, the Enhancer, which is used
in the three analyses, is described in Section 3.3. And finally, the Sections 3.4 to 3.6 deal with
the three analyses itself. We offer two analyses that deal with the application’s usage of Android
permissions. The first analyzes the permission usage inside an application (Section 3.4) and the
second between different applications (Section 3.5). The third analysis tracks information flow
between Android permissions (Section 3.6).

As already mentioned PAndA2 provides the opportunity to integrate further analyses. How
this can be done as well as how the user interface can be changed is described in Section 4.
Our tool currently supports the Android API version 22. The question how to adapt the API
level PAndA2 supports, is also treated in Section 4. Section 5 then deals with the actions
we took to assure a certain level of quality. We also compared our tool and in particular the
three analyses with some other tools to evaluate how PAndA2 performs in comparison to other
Android analysis tools. The concrete setup as well as the results are described in Section 6. A
description of possible options for future refinement of PAndA2 follows in 7. Finally, Section 8
gives a short conclusion derived from the previous chapters.

2 Architecture Overview

This chapter is used to sum up the underling architecture of PAndA2 . A fully detailed
description of the architecture can be found in our Architecture Document. PAndA2 is not
only a tool but also a framework. On one hand we deliver a tool that supports three different
analyses right away:

1

2 ARCHITECTURE OVERVIEW

Figure 1: Architecture Overview

• Intra-App Permission Usage Analysis (see Section 3.4)

• Inter-App Permission Usage Analysis (see Section 3.5)

• Intra-App Information Flow Analysis (see Section 3.6)

On the other hand we deliver a framework that can easily be extended to support any other
analysis or to use another user interface (see Section 4).

In this chapter we will provide an overview over the architecture of our tool and by that
explain the general workflow of any analysis executed with PAndA2 .

Figure 1 provides a complete summary of the tool’s architecture. The biggest component
illustrated in that figure is the Analysis component, it contains the analysis itself. The second
largest component shown in Figure 1 is the Client. This component contains the whole
interactive part of PAndA2 , e.g. the Commandline Interface and the Graphical User Interface.
All other components visualized in Figure 1 belong to the Core package. This package
contains all interfaces which loosely couple the Client component with the Analysis
component, namely the AnalysisFactory and the AnalysisRunner. The component
that accesses the Soot framework which can be used in different steps of any analysis belongs
to the Core package as well. Last but not least the CoreServices belong to that package,
too. These services can be used by several other components of the tool and provide a large
variety of functionality (see Section 3.2).

2

3 IMPLEMENTATION DETAILS

In order to start an analysis the Client has to call the AnalysisFactory which will
create the Analysis itself. Once the Analysis is created the Client can use the Analy-
sisRunner to execute this Analysis. At the end of any analysis the AnalysisRunner
will reply an AnalysisResult to the Client.
All in all this makes sure that the Client and the Analysis components are independent
from each other. To start an analysis the Client has to hand over only a minimum of input
information to the factory. And any AnalysisResult provides a textual or graphical result
representation in form of an HTML-Document.

Via a closer look at the three sub-components of the Analysis component, namely the
Enhancer (see Section 3.3), the GraphGenerator and the Analyzer, the workflow of
any analysis that follows our implementation principle will be described in the following. While
the Enhancer is unique, the GraphGenerator and the Analyzer can be different from
Analysis to Analysis. The Enhancer’s task is to enhance the source code representation
which is extracted from an App’s .apk file. This representation contains all information about
the structure of an App. The extraction process itself is performed by the underlying Soot
framework, which directly provides a tree like data structure for the source code representation.
In order to enhance this representation the Enhancer will use several CoreServices and
by that add more information to it.

All of the built-in analyses and most of all analyses work on graphs. Therefore, the next
step during any analysis is done by the GraphGenerator, which will build a graph that
suits the specific type of analysis. The Analyzer will then perform the analysis itself on the
previously constructed graph. Then it will compute the AnalysisResult and thereby finish
the analysis process.

The design of our architecture ensures the possibility of extension. Thus, it provides a
head-start to the development of a new analysis. Furthermore, it allowed us as a project group
to work on different parts in parallel.

3 Implementation Details

This section describes important concept and algorithms realized during the implementation
of PAndA2 . Section 3.1 starts with the Client component. This is then followed by
the description of the CoreServices in Section 3.2. Afterwards, Section 3.3 deals with
the Enhancer, which is used in the three analyses. These analyses follow right after the
Enhancer in the Sections 3.4 to 3.6. The first analysis is the Intra-App Permission Usage
Analysis in Section 3.4 followed by the Inter-App Permission Usage Analysis in Section 3.5.
Finally, Section 3.6 describes the Intra-App Information Flow Analysis.

3

3.1 Client 3 IMPLEMENTATION DETAILS

3.1 Client

This paragraph provides a short introduction about the Client and the way the related class was
described in the architecture document. It is an abstract class which acts as a stub between
the Graphical User Interface (GUI), Command Line Interface (CLI) and Analysis Factory. A
Client class contains all the methods to provide input, trigger analysis and provide results
back. Client class has two subclasses, one for GUI and another for CLI. These subclasses
provide implementations of all the abstract methods present in Client (Refer Figure 2).

Figure 2: Client Model

The two subclasses of Client are

1. ClientGUI.

2. ClientCommandLine.

Before explaining in the next subsections about CLI and GUI of our tool, this section
provides a basic idea with respect to

• How the user can able to start the application.

• What changes we made with respect to the way we are calling the business logic classes
now.

Application can be started either by using GUI or CLI based on the user preference (Refer
Figure 3). The user can start the tool either by clicking the application jar file for using the GUI
or by using this command "java -jar PAndA2.jar <inputs>" in the command prompt for using
CLI.

Certain changes had been made in the codebase compared to the decisions which we had
taken in the architecture document with the way CLI or GUI interfaces getting triggered using
the application main method.

4

3 IMPLEMENTATION DETAILS 3.1 Client

Figure 3: Triggering User Interface

Previously, based on the architecture document the application’s CLI or GUI will be triggered
based on the business logic classes (ClientGUI and ClientCommandLine). That is in
simple terms, the views (CommandLine or GUI classes) and its related functionalities are
triggered initially based on the business logic classes (Models). But in general, business logic
classes should not be used for deciding which interface (CommandLine or GUI) should be
shown to the user. It has to be the other way around. So we have made the necessary changes
with respect to the way in which the initial calls are made for selecting the user interface
(CLI/GUI) based on the input parameter provided by the user.

Now the selection of the user interfaces will be decided based on the following criteria
(Refer Figure 4)

• If the input parameter is none, then GUI will be triggered.

• If there are input parameters, then CLI will be triggered.

This decision is now taken in the main method which is present in the ApplicationEn-
tryPoint class of our tool itself, so that now the business logic classes are totally de-coupled
with the user interface selection.

3.1.1 Graphical User Interface (GUI)

As our tool is developed in Java, so we have to come up with a technology supporting Java to
interact with the User. Out of bundle of options available initially we decide to go with Java
Swing which is quite robust, consists of lots of supporting functions, and later adapting to our

5

3.1 Client 3 IMPLEMENTATION DETAILS

Figure 4: Client Architecture

growing needs to handle the output display in a simple, fruitful manner we shifted to JavaFX .
The basic motto or reason behind shifting to JavaFX was the increasing demand of tool to
display graphical results specifically in COMPARISON mode of the Intra-App Information
Flow Analysis. A brief description of JavaFX has been given in the subsequent section.

JavaFX It provides us with a set of graphics and media packages that enables to design rich
client applications. JavaFx applications can use JavaAPI libraries to access native system
capabilities which is an advantage over others. JavaFX APIs are available as a fully integrated
feature of the Java SE Runtime Environment and the Java Development Kit. On the top of it,
some of the JavaFx advantages which make us migrate are as follows

1. Swing interoperability - This means the existing Java Swing applications can be updated
to JavaFX to access rich graphic features and other contents.

2. Built-in UI controls and CSS - It provides almost all the major UI controls required to
develop a full featured application.

6

3 IMPLEMENTATION DETAILS 3.1 Client

3. Components can be skinned with standard Web technologies such as CSS.

4. HT ML Content - JavaFX brought the ability to render HT ML content in Java appli-
cations by providing a user interface component that has web view and full browsing
functionality.

Starting Analysis Using GUI As discussed earlier in this section, for the ease of the user
interaction with the tool we have a graphical user interface built in JavaFX . Here in this section,
a brief description of the functions involved, triggering of GUI, and basic functioning of GUI
is covered.

Tool Initialisation The tool can be started in two ways, either by passing the CommandLine
arguments which trigger command line interface or when we leave it blank will trigger the GUI
as shown in the Figure 5. Both the interfaces provides certain set of functionalities that has
been discussed in the previous section and more elaboration is given in subsequent sections.
Here in this section, the process of analysing Android applications via GUI is explained.

Parameters Input Now we can start a new analysis by clicking on New icon on the toolbar,
a dialog box appears in front as shown in Figure 6 and Figure 7 which requires some Input
from the user, e.g. Level, Mode, Path of .apk files, etc. The Input parameters as displayed
in Figure 7 depends on the input user had given in previous page shown in 6. On the basis
of the input, the respective Analysis will be carried out. Some of the basic validations on the
Input will be carried in this phase such as checking fingerprints of the .apk file for the Version
number, etc. and user can see them right after entering at run time.

Start Analysis When done with all the required input field, clicking on Finish button will
transfer the control to the Clientwhich triggers the Analysis. Analysis will run in background,
user can see the rotating icon on the bottom left of the screen which states that the tool is
processing. Once the tool is finished with Analysis, icon state will be changed and the result
generated during analysis will be displayed to the user.

Result Representation Once the Analysis is finished, the result will be shown to the user
with all the predefined Legend and Statistics of the analysis for the better understanding of the
User. Analysis result will be shown to the user in Textual manner as in Figure 8 and Graphical
manner as in Figure 9 in TabPane. TabPane contains three sub TabPanes for textual, graphical
and Messages respectively. User will be having the option to save the result with predefined
extension .pa2. User need to install Graphviz which is available free of source. More about
it, is mentioned in InstallationRequirements.

7

3.1 Client 3 IMPLEMENTATION DETAILS

Figure 5: GUI: Home

Result Filters Result field can be huge at times, therefore filters functionality is provided
to filter the result.User can filter the result in certain categories depending on the type of
analysis chosen while setting up the parameters. Result can be filtered on Detaillevel (APP,
COMPONENT etc.) or Permission filters (REQUIRED, MAYBE_MISSING etc.). Filters for
PermissionUsage(IntraApp−Level1) is shown in Figure 10.

Status can be seen at the bottom of the window throughout the Analysis. UImessages will
be displayed on the field present on the bottom right of the window and also the exceptions in
case if encountered any.

Saving and Comparing Result After the analysis is finished, user will see either the analysis
result of current .apk file or its comparison with previous saved result .pa2 file providing
that a previous saved result was provided to the tool while setting input parameters of analysis.
User can also opt for saving the current comparison result.

8

3 IMPLEMENTATION DETAILS 3.1 Client

Figure 6: Analysis Wizard: Page1

Open Previous Result Apart from starting a fresh analysis, user can also opt to open a
previous saved result .pa2 file present in the system. The saved result will contain both the
textual and graphical representations in SUMMARY as well as COMPARISON mode.

3.1.2 Command Line Interface

As mentioned in the previous section as well as in the architecture document, the Command
Line Interface (CLI) functionality of our application can be triggered when the user provides
input parameters (refer Table 1) in the command prompt (refer Figure 11). This section covers
the various functionalities which are possible using this interface and the third party libraries
which we have used for implementing those functionalities. The CommandLine class which
is used for the following functionalities,

• Handles the user input parameters.

9

3.1 Client 3 IMPLEMENTATION DETAILS

Figure 7: Analysis Wizard: Page2

Figure 8: GUI: Result

10

3 IMPLEMENTATION DETAILS 3.1 Client

Figure 9: GUI: Result2

Figure 10: GUI: Filter

– Parsing the user input parameters.

– Validating the user input using Business logic class.

• Start Analysis.

• Handles the analysis result.

– Displaying the analyzed result.

– Filtering the analyzed result.

– Saving the analyzed result in the user selected file path.

– Comparing the previous result for analysis.

Available user input parameters for CLI are shown in Table 1.

Parsing the user input parameters Parsing the user input parameters which was mentioned
in the previous section is handled using the JCommander 1library. The high level purpose of

1http://jcommander.org/

11

http://jcommander.org/

3.1 Client 3 IMPLEMENTATION DETAILS

Figure 11: Client CommandLine Interface

this library is used for creating the instance of the UserInput class which actually used for
persisting the user input values such as levels, apk input path, etc. So the tool is configured
by using the JCommander parameter annotation for the variables present in that class. For
example, the level mode variable is binded using the parameter annotation as follows,

@Parameter (names = { "− l " , "− l e v e l " } ,
d e s c r i p t i o n = " A n a l y s i s Leve l " , r e q u i r e d = t r u e ,
c o n v e r t e r = L e v e l C o n v e r t e r . c l a s s)
p r i v a t e Leve l l e v e l ;

So from the above lines of the code, we can understand that this parameter is required and
should be given by the user using the notation such as −l or −level. The value will be String
value and it will be converted to instances of Level enum using the custom converter classes.

With respect to the custom converter classes which is used for converting the value of
the String class to the instance of our custom classes or enums such as Level, Mode etc.
JCommander will throw an exception if the user input doesn’t match one of the following
scenarios,

• Input parameter is incorrect or not available.

12

3 IMPLEMENTATION DETAILS 3.1 Client

Parameter Description Compulsory

-opt (or) -option Tool Options N
-l (or) -level Analysis Level Y
-i (or) -input Initial APK File Input Y

-lm (or) -levelmode Level Specific Mode Y(-l is 2B)
-nn (or) -nonnative Non native APK Files N

-ci (or) -compareinput Previous analysis file path N
-r (or) -result Result option (Save (or) View) N
-v (or) -view Result View option N

-fp (or) -filepath Path for saving the result N
-f (or) -filter Initial filter values N

-dl (or) -detaillevel Initial detail level values N
-x (or) -exit (or) -t (or) -terminate Option for program termination N

-ts (or) -testscenario Field for printing the output or not N
-tstat (or) -teststat Statistics should be present in the output N

Table 1: List of CLI parameters.

• Required parameter is not given in the input.

• The input value is not correct for the respective parameter.

Once the input parameters are parsed using the Jcommander and the initial validation was
successful as mentioned in the above paragraphs, then the instance of the User Input class
will be updated with the possible values in their instance variables with the initial set of values
given by the user. This instance variable of the User Input class will be further used for
analysis.

Validating the user input using Business Logic class From a command line interface
perspective, we will do the second step of validation through our common business logic class
(Client) for handling the following scenario’s validation,

• In Inter App resource usage (level2b) scenario, the level specific mode value should be
given by the user. Else validation will be failed.

• In comparison scenario, the previous analysis result parameter value should be given.
Else the user input won’t be considered as valid.

• For saving the result, the respective file path along with the valid file name should be
given by the user. Else validation is failed for this scenario.

13

3.1 Client 3 IMPLEMENTATION DETAILS

Start Analysis Once the input parameters given by the user are valid, then the analysis will be
performed with the help of the methods present in the business logic class (ClientCommand-
Line) which was specific to the CLI. The input of the analysis was passed to the different
instance of the AnalysisFactoryLvl classes based on the level selected by the user. By
using the method presented in that AnalysisFactoryLvl instance, the analysislist
is generated which will be used for getting the result after analysis by calling the method
using the AnalysisRunner instance. If the analysis executed successfully without any
exception, then we will get the instance of the level based AnalysisResult classes which
will be further used for displaying or saving the result based on the user selection. If we got an
exception during the analysis or the error message present in the instance of the level based
AnalysisResult classes, then the error message will be displayed in the CLI. So in short
the functionality described in this paragraph can be described as follows,

• Generate the analysis based on the user configuration and trigger the exceution of the
same.

• If analysis was successful, then show the result based on the user configuration.

• Else show the error message.

Displaying the analyzed result Based on the selected user input parameter, there are three
ways the result can be displayed with the help of the command line interface. Three different
types of result supported by our tool are,

• Textual.

• Graphical.

• Message.

Textual Textual analysis result will be displayed in the CLI similar to the way the statements
are getting printed in the console for the Java applications. Depends on the selected level,
and their corresponding Detail Levels (APP, COMPONENT etc) and the Permission filters
(REQUIRED, MAYBE_REQUIRED etc) the result contains information about the same. The
display selection of this result is selected by the CLI by default if the user doesn’t give any
specific input parameter for the same. This result displayed to the user contains all the necessary
information in HTML and CSS format which will be used for displaying it in the GUI. So from
CLI perspective, we are parsing the textual result to remove the HTML contents using the third
party library called ” jsoup” 2.

Using this library (” jsoup”) we are removing the HTML tags and attributes and other CSS
information, so that currently we are printing the output of the result in the console. The class
named HtmlParser is used for parsing the generated textual result and then for displaying
the same in CLI. The following Figure 12 illustrates how the textual result using CLI.

2http://jsoup.org/

14

http://jsoup.org/

3 IMPLEMENTATION DETAILS 3.1 Client

Figure 12: CLI Textual Result

Graphical In general, GUI will be launched to show the graphical result. So basically
once the user gives the parameter(-v) as "GRAPHICAL" for viewing the result, the validation
methods in the business logic class (ClientCommandLine) will decide the user selected
view option as a boolean value which will be used in the view class (CommandLine) to decide
what type of result which needs to be displayed.

So in this scenario, once the analysis is successful, the instance of the user selected level
based AnalysisResultLvl class is passed as the initial analysis result to the GUI class
which will be triggered for launching the application in the GUI format. Once the GUI
application is launched and the initial result is loaded, then by default the graphical result will
be displayed (Refer Figure 9).

Message Usually, the instance of the AnalysisResultLvl class contains the list
of messages which will be of different types such as ERROR, INFO, SUGGEST ION and
WARNING. So all these messages will be printed in the console output of the CLI by going
through all the messages, once the given application was analyzed successfully. The Figure 13
represents this type of analysis result in the CLI.

Filtering the analyzed result Similar to GUI, filtering the result for viewing the same
(Textual or Graphical) is possible through CLI. User can filter the result as much as they want
using CLI and view the result. User can use this filtering option in two ways,

• Filter and view the result with the help of the initial user input parameters available for
result filters and detail levels. Even before analysis starts, the filter configuration is set

15

3.1 Client 3 IMPLEMENTATION DETAILS

Figure 13: CLI Message Result

and once we get the analysis result, the result will be shown to the user in the console
based on the initial filter configuration.

• Filtering the result once it is shown. This can be done by not terminating the program
by giving the related parameter in the initial user parameter configuration. In general,
result will be shown to the user and application will be terminated. In this case, by the
result will be shown based on default detail level and result filter and then asks the user
the option to filter the result.

Saving the analyzed result in the user selected file path Similar to GUI, the analysis
result can be saved in CLI with the help CustomSerializer class which was explained in
this section. The scenario is explained as follows,

• If the given filepath location exists, and if we get the successful analysis result, then
result will be saved. Else error message will be shown to the user.

Loading the previous analysis result Once the result is saved, it can be loaded for viewing
the same to CLI similar to GUI. All the options related to filtering the result is available for this
functionality. For further information about how the result is getting loaded, please refer to
Section 3.1.3).

Comparing the previous analysis result Based on the initial parameter configuration set-
tings, comparing the application with previous analysis result or with the another Android
application can be performed similar to GUI.

16

3 IMPLEMENTATION DETAILS 3.1 Client

Initially, the information will be shown to the user in the console, regarding the difference
between the applications as well as their version difference. If user wants to continue doing the
analysis, then he has to enter "Y" in the console.

Once the analysis is performed successfully, then the result will be displayed or saved based
on the initial user selected configuration.

3.1.3 Loading and Storing the Result

As mentioned in the Architecture document, we have implemented the functionality for loading
and saving the instance of the AnalysisResult class using the serialization mechanism
with the help of third party serializer library called Kryo 3. Even though, Java supports
serialization out of the box with the classes (Serializable, Externalizable), we have
used the custom serializer library named Kryo for implementing this serialization mechanism
for saving (serialization) and loading (de-serialization) the AnalysisResult object. Even
though the implementation of default Java serialization was written in our project, currently we
are using the Kryo serialization for performing this functionality.

The decision for using the custom serialization library over the standard Java serialization is
because of following reasons,

• No need to implement Serializable interface in the classes if we use Kryo for doing
the serialization.

• No need to update the serialVersionUID value if we modify the variables in the respec-
tive classes which we are serializing. The value of this varaible needs to be updated,
whenever we make changes in the serialized classes. This must be required if we use
Serializable interface for serialization.

• Custom options are available in Kryo for serializing the objects in the classes in other
libraries such as Soot. Using Java serialization, it is not pretty staright forward to
implement this feature.

• Custom options are available in Kryo for speeding up the de-serialization process by
registering the respective classes which are getting serialized. This can be done in future
if we want to improve the performance of reading and writing the object using Kryo.

In general, the way we have implemented the serialization mechanism in our project is by
using the available serialization and dependent classes offered by the Kryo library. Serialization
and de-serialization will be fully taken care by Kryo. It depends on the way we want certain
classes to get serialized and de-serialized by providing specific parameters for them.

For storing the result, the user selected folder path and the file name will be used along with
the instance of the generated instance of the AnalysisResult class. Kryo will serialize
this object in the bytecode format and the contents will be saved in the respective file with the

3https://github.com/EsotericSoftware/kryo

17

https://github.com/EsotericSoftware/kryo

3.2 CoreServices 3 IMPLEMENTATION DETAILS

file extension (.pa2). The file extension (.pa2) is important in certain cases such as during
comparison mode as tool might validate the file extension of the previously saved analysis
result. From Kryo or de-serialization perspective, this file extension is not a pre-requisite.

For loading the result based on the user selected file of .pa2 format, the result will be de-
serialized using the Kryo and will be converted to the object. Incase of any problems occured
during the serialization or de-serialization scenarios, related exceptions will be captured and
the information will be displayed in the tool.

This custom serializer (Kryo) dependent on the libraries 4 such as,

• minlog-1.3.0.jar.

• objenesis-2.2.jar.

• reflectasm-1.0.1-shaded.jar.

In the architecture document, we haven’t mentioned in-depth about which serialization
mechanism we are going to use for loading and storing the analysis result. So with respect to
changes and additions for the serialization mechanism, the classes (CustomSerializer
and DefaultJavaSerializer is added for implementing the functionality of the same.

CustomSerializer class represents the functionality which we have discussed earlier
in this section (Serialization mechanism using Kryo library). Currently we are using this class
for loading and storing the result. DefaultJavaSerializer represents the serialization
functionality using Java serialization. We are currently not using the functionality of this class
as we have mentioned the reasons earlier in this section.

3.2 CoreServices

The CoreServices describe elements that provide their functionality to be used in the
analyses. Currently we provide the three services XMLParser, DataStorage and State-
mentAnalyzer. Details about these services can be found in the following sections, starting
with the XMLParser in Section 3.2.1. This is followed by the DataStorage (Section 3.2.2).
Finally, the StatementAnalyzer is described in Section 3.2.3.

3.2.1 XMLParser

XML Parser is one of the core features of our project and we are going to see a little bit in detail
about it in this section. Our analysis tool gets the apks as the input, these apks are unzipped to
get the XML file in the apk and we use XML Parser in our project to get the information from
the XML file. The XMLParser we have implemented performs various functions which are
described in detail below,

4https://github.com/EsotericSoftware/kryo/tree/master/lib

18

https://github.com/EsotericSoftware/kryo/tree/master/lib

3 IMPLEMENTATION DETAILS 3.2 CoreServices

Cert Parser Cert Parser is a part of our XMLParser, which performs the action of getting
the signature and fingerprint of the apk that is passed as the input. Cert Parser is an extension
of Binary Parser which uses a xmlPull parser to understand the non-human-readable XML file,
which we get for unzipping the apks.

XMLLayout Parser The function of XMLLayout Parser is to parse through the XML
layout files of the Android application to find out the call back function that is used. For this
first the unzipped layout file is parsed by LayoutBinary Parser using the XmlHandler object.
Then DummyMain class uses XMLParser to find the call back methods and adds it to a list.
For using LayoutBinary Parser, we have included axml2jar file to our project folder.

ARSC parser The resource files are represented with Integer ID While generating the
Jimple code, which we get from passing the apk through Soot that are passed as the input. So
the ARSC Parser job is to find out which resource files ID particularly layout ID, that is used by
a specific class. To get the resourceID from Android application, the Integer ID from the Jimple
code is passed to the ARSC Parser. ARSC Parser uses the Integer ID and goes through the
Android application to get the name of the resource(layout) that has been used. DummyMain
class uses ARSC parser to find layout files for Android application’s activity class

ManifestXML Parser Similar to the Cert Parser, ManifestXML Parser is also an extension
of Binary Parser that implements XmlPull Parser to get a human readable XML file. Then the
ManifestXML parser goes through the Manifest file to get the information that is defined in it.
Informations that are got from Manifest file is listed below

• Manifest Information

• App Name

• Uses Permission

• Intent Filter

3.2.2 The Interface DataStorage

Since the tool PAndA2 tries to analyze a particular type of applications - Android application, it
requires some defined input information from a specific version of Android Library to perform
analysis. Such input information for example is a list of available permissions associated with
API calls in the specific version. Hence in the PAndA2 tool there is an interface that supplies
those information, called DataStorage.

Being a part in the Core services of the PAndA2 , the interface plays a role as a loader
that loads and collects required data from files and stores them for later use. With the data,
the interface provides a mapping of all APIs and their permissions, lists of classified library
method calls such as sources, sinks or callback methods. Those APIs, permissions and method
calls are supported in the Android Library API level 22 as agreed in the target level agreement.
The class that implements the interface is A3DataStorage. It processes raw text in files

19

3.2 CoreServices 3 IMPLEMENTATION DETAILS

to obtain significant data needed for analysis (see Table 2 and 3.2.2 for description of files).
Currently those files are results obtained from other tools. They are PScout [6] and SuSi [12].
The PScout extracts permissions supported in an Android version by using static analysis. The
SuSi is an automated machine-learning tool that analyzes directly an Android Library source
code to identify sources of sensitive data and sinks of maybe data-leaked methods. For the
extensibility of the PAndA2 tool to support newer versions of Android API, those files can
be replaced by another ones which of course are generated by PScout and SuSi for the newer
versions.

The interface is mainly used in the Enhancer component which builds data models for
analysis within the PAndA2 tool. In particular, the class A3DataStorage is used by the
Enhancer to link all information obtained after Soot Framework disassembles an input .apk
file. Such the information is permission, normal Java or Android component class, method and
statement. In addition the interface is also used in some other specific classes for the Intra-App
Information Flow Analysis.

3.2.3 Statement Analyzer

In Android applications, intent plays a very important role for launching components (such as
activities, services, broadcast receivers and content providers) as well as for communication
between them. In addition intents can also be used to transfer data from one component to
another one. That is the reason why the PAndA2 tool takes intents into account for the Intra-App
Permission Usage Analysis, Intra-App Information Flow Analysis and the Inter-App Permission
Usage Analysis. The PAndA2 processes intents by the interface StatementAnalyzer.

The interface is considered as a service in the PAndA2 tool and is implemented by the class
A3StatementAnalyzer. It provides APIs which allow users to get intents in all types or
in specific types available in Android applications. Currently there are two types of intent
considered in the PAndA2 tool. They are explicit and implicit intent. In the PAndA2 tool, they
are considered as valid if they are used to launch other components. By the way the PAndA2

tool also considers a case of unknown-type intent which is mainly used for transferring data
from a target component back to the caller one without launching any component.

The PAndA2 tool takes body of each method in each class to analyze and collect intents if
any available. All information of an input Android application is manipulated in the object
EnhancedInput (see the Section 3.3.1 for more information). It means that while creating
the object EnhancedInput, the interface StatementAnalyzer is also used to get all
explicit and implicit intents existing in the application. Then they are stored in the object
EnhancedInput for later use. Indeed, intents can be analyzed and obtained whenever an
analysis needs them. However because all of analyses in the PAndA2 tool require them, intents
can be processed at the same time when the information of the application is manipulated. As a
result of this, the performance of the PAndA2 tool can be improved much. The relevant infor-
mation of an intent includes it’s type (explicit or implicit), the target component corresponding

20

3 IMPLEMENTATION DETAILS 3.2 CoreServices

PScout’s Result Files
File Name Description
allmappings This file is a text file containing all mapping between

statements and their required permissions. The format
of content in this file is:
Permission:<name of permission>
<number of> Callers:
<ClassName: ReturnType Method-
Name()>
...
<ClassName: ReturnType Method-
Name()>

publishedapimapping An extra file that supplies more permissions and state-
ments besides the allmappings file. This file has
same format as the allmappings file.

contentproviderfield- This file lists out the classes or sub classes in
permission the package android.provider with specific ac-

tions and the permission for those actions. The content
of this file is in format:
PERMISSION:<name of permission>
ClassName or SubClassName: an-
droid.net.Uri <Constant Variable>

contentprovider- Each content provider need a specific Uri
permission to be accessed and each Uri is in format con-

tent://uri . Therefore this files maps each Uri
with a permission that requires for Android application
to access to the content provider.

intentpermission Since implicit intent is specified by an action defined
by the Android system, the intentpermission
file will shows what action uses what permission. The
detail of content looks like
<Constants Action Name> <Permission
Name>
<Abstract Class Name> <Permission
Name>

listofallpermissions The file contains all supported permission in a specific
version of Android Library. In details, this files con-
tains 124 defined permissions in API 22 of Android
System.

androidcallbacks consists of all callback interfaces supported in the An-
droid API version 22.

Table 2: Defined Input Information from PScout

21

3.2 CoreServices 3 IMPLEMENTATION DETAILS

SuSi’s Result Files
File Name Description
output_Sources.txt generated by the tool SuSi, this file contains all APIs

that are seen as sources. Each line in the file represents
for a source which is in format:
<class: returnedType method-
Name(parameters,...)> -> _SOURCE_

output_Sinks.txt same as the file for sources, but this file consists of
APIs which are considered as sinks. Those APIs are
represented in format:
<class: returnedType method-
Name(parameters,...)> -> _SINK_

Table 3: Defined Input Information from SuSi

to the specified class or intended action string and finally the statement which launches the
intent. For example, in the application SimToSms (14), there are 3 three intents. In the class
SimReaderActivity, one is explicit intent with target class SmsSenderActivity and
it is launched by the method call startActivityForResult. The second one is implicit
and is specified with an action string de.upb.pga3.sendData. This intent is started by a
method call startActivity. The last one is unknown type in the class SmsSenderAc-
tivity because it is used to transfer data from itself - the target component back to the caller
- the SimReaderActivity.

As promised in the target level agreement, the PAndA2 tool only considers intents which
are declared, specified and launched in a same method. It skips intents which are defined as
global variables or referenced variables. One important remark is that all syntaxes of classes,
methods, statements and so on of an input Android application are not as same as normal Java
language. The PAndA2 tool therefore mainly work on statements in format of Jimple Code.
For example the method onCreate(...) of the class SimReaderActivity (see 14)
will be disassembled into Jimple Code as below

p r o t e c t e d void o n C r e a t e (a n d r o i d . os . Bundle)
{

de . upb . pga3 . s imtosms . S i m R e a d e r A c t i v i t y $r0 ;
a n d r o i d . os . Bundle $r1 ;
a n d r o i d . c o n t e n t . I n t e n t $ r2 ;
j a v a . l a n g . O b j e c t $ r3 ;
a n d r o i d . t e l e p h o n y . TelephonyManager $r4 ;
j a v a . l a n g . S t r i n g $r5 ;

$ r0 := @this : de . upb . pga3 . s imtosms . S i m R e a d e r A c t i v i t y ;

$ r1 := @parameter0 : a n d r o i d . os . Bundle ;

22

3 IMPLEMENTATION DETAILS 3.2 CoreServices

$r3 = v i r t u a l i n v o k e $r0 . < de . upb . pga3 . s imtosms . S i m R e a d e r A c t i v i t y :
j a v a . l a n g . O b j e c t g e t S y s t e m S e r v i c e (j a v a . l a n g . S t r i n g) >(" phone ") ;

$ r4 = (a n d r o i d . t e l e p h o n y . TelephonyManager) $ r3 ;

$ r5 = v i r t u a l i n v o k e $r4 . < a n d r o i d . t e l e p h o n y . TelephonyManager :
j a v a . l a n g . S t r i n g ge tS imSer i a lNumber () > () ;

$ r2 = new a n d r o i d . c o n t e n t . I n t e n t ;

s p e c i a l i n v o k e $r2 . < a n d r o i d . c o n t e n t . I n t e n t : void
< i n i t >(a n d r o i d . c o n t e n t . Contex t , j a v a . l a n g . C l a s s) >
($r0 , c l a s s " de / upb / pga3 / s imtosms / S m s S e n d e r A c t i v i t y ") ;

v i r t u a l i n v o k e $r2 . < a n d r o i d . c o n t e n t . I n t e n t : a n d r o i d . c o n t e n t . I n t e n t
p u t E x t r a (j a v a . l a n g . S t r i n g , j a v a . l a n g . S t r i n g) >("SIM_DATA" , $r5) ;

v i r t u a l i n v o k e $r0 . < de . upb . pga3 . s imtosms . S i m R e a d e r A c t i v i t y : void
s t a r t A c t i v i t y F o r R e s u l t (a n d r o i d . c o n t e n t . I n t e n t , i n t) >($r2 , 1) ;

re turn ;
}

Listing 1: Jimple code of method onCreate()

To extract intents, the analysis deals with three specific statements in format of Jimple
Code. They are the declaring intent statements, the specifying property statements and the
launching intent statements.

The first one - declaring intent statement - is an assignment. It declares a variable in
type of android.content.Intent. The assignment can propagate to the variable a new
instance of android.content.Intent, an other existing variable or a returned value
from a method call. For example in the Jimple Code snippet above, the statement $r2 =
new android.content.Intent; is considered as a declared intent statement. Because
it defines the variable $r2 in type of android.content.Intent which can be used later
on. By dealing with this type of statement, the intent analyzer can get a lists of declared
variables which perhaps then are enriched with further properties and are started.

The second type is the specifying property statements which always follow the declaring
ones. This type of statement adds more information to already defined intents. An intent has
many properties however to decide if it is explicit or implicit, the PAndA2 tool will take into
account the target classes or the action strings of it. Both of them are specified through method
calls of the object android.content.Intent. There are two groups for those method
calls. One is constructor and the another one is set methods. For example, after being de-
clared, the intent $r2 is initialized by a constructor. The constructor of it (specialinvoke
$r2.<android.content.Intent: void <init>(android.content.Con -
text,java.lang.Class)>($r0, class "de/upb/pga3/simtosms/SmsSen-

23

3.2 CoreServices 3 IMPLEMENTATION DETAILS

derActivity");) has two parameters. The important parameter is the second one which
specifies the target class SmsSenderActivity. Based on it, the intent $r2 is decided as
explicit one. In case a constructor does not have input parameters then the intent is considered as
unknown. If an intent calls set methods such as setAction(...) or setClass(...)
etc. type of it is also recognized. The PAndA2 tool will covers several cases for constructors
and set methods listed in the 3.2.3. Processing this type of statement helps the analysis to
decide the type of an intent - explicit or implicit.

The last type of statements is used to start component specified in intents. After being de-
clared and specified with properties, intent can be started. Then depending on target class or ac-
tion string, the components corresponding to such those properties will run. For example, in the
Jimple Code (1), the statement virtualinvoke $r0.<de.upb.pga3.simtosms.
- SimReaderActivity: void startActivityForResult(android.con -
tent.Intent,int)>($r2, 1); is a launching intent statement. It requires the intent
$r2 defined above as input parameter. Currently the PAndA2 tool processes many method
calls for launching intents supported in the Android APIs 22. Table 3.2.3 lists out all of them.
With this type of statement, the analysis can decide what intent is launched and what is not.

Briefly the analysis traverses forward a control flow graph which is built for body of each
method. The graph has type of UnitGraph - an object supported by Soot Framework.
Indeed, the analysis can processes forward through a set of statements of a body. However the
set does not represent exactly the order of statements as well as the control flow through each of
them. That is why the UnitGraph is more promised for the result of analysis intents. While
traversing forward the graph, the analysis records all defined variables and their referenced ob-
jects or values in a list not only for intents but also for another types such as string, int or object
class. Because the variables may be used later on as an instance of a class, as a property or as
input parameters for method calls. In case a statement is a method call from a defined variable,
the analysis can get the referenced object according to the defined variable. If a statement is a
method call which requires some variables as input parameters, then basing on the list of defined
variable, the analysis can extract the values corresponding to the required variables. By this
way, the analysis can obtain exactly information needed in each statement to decide the property
of intents. For example in the snippet Jimple Code above, the statement virtualinvoke
$r2.<android.content.Intent: android.content.Intent putExtra -
(java.lang.String,java.lang.String)>("SIM_DATA", $r5); requires the
variable $r2 as a referenced object and the variables $r5 as input parameters. Then the
analysis will check in the list of defined variables to get the Intent referenced by the variable
$r2 as well as the value of the parameter $r5. Hence, it is known that the already defined
intent $r2 is manipulating the data hold by $r5. For intents, if a statement is the specifying
property statement (the second type), the analysis can extract the values of the input parameters
in the statement, and then use the EnhancedInput to get the target class corresponding to
the values. If a statement is in type of launching intent statement, the analysis will get the
referenced object according to the input parameter of the statement to know what intent is
launched.

24

3 IMPLEMENTATION DETAILS 3.2 CoreServices

Methods Description
Intent() constructor of intent without any specifi-

cation (unknown type)
Intent(java.lang.String) initialize an intent with an action (implicit)
Intent(java.lang.String, construct an intent with an action and
android.net.Uri) a URI (implicit)
Intent(android.content.Intent) construct an intent with an existing one.

Type of the form on is depending on the
type of the later one.

Intent(android.content.Context, initialize intent with a specific class or
java.lang.Class) component (explicit)
Intent(java.lang.String, constructor of intent which is specified
android.net.Uri, with an action associated with a URI as
android.content.Context, well as a class or a component. (can
java.lang.Class) be both types)
setAction(java.lang.String) set an action to existing intent (implicit)
setClass(android.content- specify a class or component within the
.Context, java.lang.Class) App to intent (explicit)
setClassName(android.content- specify a string class name to an intent
.Context, java.lang.String) (explicit)
setClassName(java.lang.String, set a package name as well as the class
java.lang.String) name or component name to an intent

(explicit)

Table 4: Specifying Intent Methods

Process control flow graph by using the UnitGraph of Soot Framework, the intent
analysis has a control flow graph which helps processing statements in body of a method more
precisely. However the analysis also must deal with some problems of if statement and loop
statement. Because Soot Framework just supports a graph and it is not a compiler to show
exactly the result of condition in if statement or in loop statement, the analysis will assume
that all flows or branches generated by these statement will be taken into account. Hence
there would be a case where there is only one defined intents, but through if statement (or
loop statement) the intent is specified in two different ways corresponding to true and false of
condition in the if statement (or loop statement). Then the analysis returns two intents. There
would be a case when an intent is already defined and specified, but through the control flow,
the intent is defined or specified again, then the analysis will consider only the latest definition
or specification of the intent.

25

3.2 CoreServices 3 IMPLEMENTATION DETAILS

No. Methods
1 void startActivity(android.content.Intent)
2 void startActivity(android.content.Intent,

android.os.Bundle)
3 void startActivityForResult(android.content.Intent,int)
4 void startActivities(android.content.Intent[])
5 void startActivities(android.content.Intent[],

android.os.Bundle)
6 void startActivityForResult(android.content.Intent,int,

android.os.Bundle)
7 void startActivityFromChild(android.app.Activity,

android.content.Intent,int)
8 void startActivityFromChild(android.app.Activity,

android.content.Intent,int,android.os.Bundle)
9 void startActivityFromFragment(android.app.Fragment,

android.content.Intent,int)
10 void startActivityFromFragment(android.app.Fragment,

android.content.Intent,int,android.os.Bundle)
11 boolean startActivityIfNeeded(android.content.Intent,

int)
12 boolean startActivityIfNeeded(android.content.Intent,

int,android.os.Bundle)
13 boolean startNextMatchingActivity(android.content-

.Intent)
14 boolean startNextMatchingActivity(android.content-

.Intent,android.os.Bundle)
15 android.content.ComponentName startService(

android.content.Intent)
16 boolean bindService(android.content.Intent,

android.content.ServiceConnection,int)
17 void sendBroadcast(android.content.Intent,

java.lang.String)
18 void sendBroadcast(android.content.Intent)
19 void sendOrderedBroadcast(android.content.Intent,

java.lang.String)
20 void sendOrderedBroadcast(android.content.Intent,

java.lang.String,android.content.BroadcastReceiver,
android.os.Handler,int,java.lang.String,
android.os.Bundle)

21 void sendStickyBroadcast(android.content.Intent)
22 void sendStickyOrderedBroadcast(android.content.Intent,

android.content.BroadcastReceiver,android.os.Handler,
int,java.lang.String,android.os.Bundle)

Table 5: Launching Intent Methods

26

3 IMPLEMENTATION DETAILS 3.3 Enhancer

3.3 Enhancer

The Enhancer is the first step in all three analysis levels our PAndA2 tool implements.

It decompiles the given Android application and generates an EnhancedInput for this
application (see Section 3.3.1). For this task the Enhancer uses the Soot framework which
performs the decompilation of the application. The result given by Soot then has to be wrapped
by the Enhancer into our structure of the EnhancedInput.

Furthermore, the Enhancer enriches the datastructure given by Soot. This is done by
means of the PermissionMapper as well as the Core Service StatementAnalyzer
(see Section 3.2.3 for more details).

The PermissionMapper adds permissions to statements as well as to Android compo-
nents and to the whole application. This is done by investigating the statement and dealing with
the different cases of statements. Possible cases are:

• content provider

• API call

• implicit intent

Depending on the case which was found the datastorage (Section 3.2.2) is called to map the
permission to the statement.

3.3.1 EnhancedInput

The EnhancedInput is a tree like datastructure which describes the source code of the
application to be analysed. This structure consists of a set of nodes and links between them. A
node can represent one of the following parts of the application:

• App

• Class (Android component)

• Method

• Statement

• Permission

For an application there exists one App node which is the root of the EnhancedInput.
This node then has links to all its classes. An Android component is a special type of a
class. Each class is connected to its methods, the methods have links to their statements and
finally each statement which is protected by a permission has a connection to a corresponding
permission.

In the Architecture Document we planned to use a datastructure that represents the source
code of an Android application with own classes for e.g. the method, statement, etc. nodes

27

3.3 Enhancer 3 IMPLEMENTATION DETAILS

but while we started developing, acquired deeper knowledge about Soot and elaborated our
requirements for the analyses, we decided to use the datastructure which is already provided by
Soot instead of creating a completely independent one.

The main reason for this design decision was that the way we planned our datastructure
in the architecture phase would lead to some problems in the analyses, e.g it did not take the
Soot datastructure into account. This would lead to problems in the Intra-App Information
Flow Analysis (Section 3.6), where we would have to map the datastructure given by Soot to
our datastructure. Furthermore, the statements in our own datastructure were only given in a
string representation, so any additional information, like for example the fact whether it is an
invocation statement and which method it invokes would be lost and it would be an overhead to
regain the information. In addition to that, the Soot datastructure directly provides the usage
links of variables, which was another advantage of that datastructure. So we decided to use the
classes SootClass, SootMethod and Unit replacing our own datastructure for classes,
methods and statements.

But there is also a disadvantage that came along with this decision. The Soot datastructure
does not support the possibility to navigate from a unit to the method it belongs to. Therefore
we had to enrich our EnhancedInput to add this possibility since we wanted to be able
to navigate through the complete EnhancedInputwithout problems. By adding a map
from each unit to its method body we solved this problem. The map is created while the
EnhancedInput is created and can then be used in the following analyses.

Furthermore we wanted to connect statements with their corresponding permissions but
since the Soot datastructure has no such connections we had to add another mapping to the
EnhancedInput which then gives us the possibility to store the links between statements
and permissions.

We developed the SimToSms application as a running example. It will occur wherever
we want to explain some contents on an example application. The application consists of
the two classes SimReaderActivity and SmsSenderActivity, which behave as the
names already suggest. The simReaderActivity reads the sim serial number and the
SmsSenderActivity sends it via sms. The source code of this application can be found in
the Appendix in Listing 14. Figure 14 shows a part of the EnhancedInput of the SimToSms
application. The root node is the App node, which then is linked to the Android components
SimReaderActivity and SmsReaderActivity. The activities are connected to their
methods and the methods to their statements. Due to space reasons not all methods and
statements are shown in the figure.

Each statement that is protected by one or more permissions has a link to the correspond-
ing permissions, like for example node 10 which represents the statement sendTextMes-
sage(...). This statement is protected by the two permissions android.permission.SEND_-
SMS and android.permission.WRITE_SMS and is therefore linked in the EnhancedInput to
both of these permissions.

28

3 IMPLEMENTATION DETAILS 3.4 Intra-App Permission Usage Analysis

1. App:

SimToSms

2. Component:

SimReaderActivity

4. Method:

onCreate(..)

7. Statement:

getSimSerialNumber()

11. Permission:

android.permission.
READ_PHONE_STATE

8. Statement:

new Intent(..)

5. Method:

onActivityResult(..)

9. Statement:

new Intent(..)

3. Component:

SmsSenderActivity

6. Method:

onCreate(..)

10. Statement:

sendTextMessage(..)

12. Permission:

android.permission.
SEND_SMS

13. Permission:

android.permission.
WRITE_SMS

Figure 14: EnhancedInput of the SimToSms App

3.4 Intra-App Permission Usage Analysis

The first type of analysis which comes with our tool is the Intra-App Permission Usage Analysis.
This analysis uses the capabilities of our tool in order to check if an App is or might be using
any permissions. If it uses permissions this analysis will tell the user if the App is allowed to
use these permissions and if the App is trustworthy or not. Some violations appear to influence
the trustworthiness, but in reality they could only do so with the help of another App. In this
case the analysis will determine if such a cooperation between the analyzed App and another
App is possible.

The analysis itself works as follows. At first all permissions used in the App are collected.
Then each and every collected permission will be categorized into one of the following groups:

• REQUIRED: All permissions which are required are needed in order to use the appli-
cation and their use is intended. The user will be informed that these permissions are
used.

• UNUSED: While installing an application the user will always be informed which
permission are used by the App. But it might be that some of these permissions are not
used at all. These will be marked as unused.

• MISSING: Missing permissions are the most security critical ones, because this group
describes all permissions which are used by the App without informing the user.

29

3.4 Intra-App Permission Usage Analysis 3 IMPLEMENTATION DETAILS

Figure 15: Intra-App Permission Usage Analysis: Overview

And there are two more groups considering the case that the App itself does not require
(MAYBE_REQUIRED) or miss (MAYBE_MISSING) a permission, but an cooperating App
might use these permissions through the analyzed App. In the following these five groups will
be called Permission-Groups (PGs).

After the analysis has finished the result provides the gathered information on METHOD,
CLASS, COMPONENT and APP detail level. This means the PGs will be assigned to all
permission involvements in each and every method, class (component) and the App itself. This
gives the user of our tool the possibility to tell which permissions e.g. are missing. In addition
it allows to investigate further where exactly these permissions are missing. In other words in
which class, component or method the permissions are missing.

In the next sections it will be described how the Intra-App Permission Usage Analysis
works. Figure 15 provides an overview over its three different steps. The SimToSms example,
introduced in Section 3.3, is continued and will be used to explain the different steps.

3.4.1 Enhancer Support

As well as in any other analysis the first step is the execution of the Enhancer (see Section 3.3).
By that it will provide us an EnhancedInput object which is the basis for this analysis.
This basis includes a tree like data structure that represents the whole App. In the following
Gtree = (V,E) will describe this data structure. The nodes (V) of such a tree stand for the App’s
classes (components), methods and statements and the information which statement requires
which set of permissions. E is the set of all edges which connect the nodes and build the tree. In
more detail the edges are connecting the App node with all class (component) nodes, the class
nodes with their associated method nodes and the method nodes in turn with their associated
statement nodes.
Figure 16 illustrates Gtree for the SimToSms App. It only shows a subgraph of the complete
graph, but it is sufficient for all following explanations. All nodes are consecutively numbered

30

3 IMPLEMENTATION DETAILS 3.4 Intra-App Permission Usage Analysis

1. App:

SimToSms

2. Component:

SimReaderActivity

4. Method:

onCreate(..)

7. Statement:

getSimSerialNumber()

11. Permission:

android.permission.
READ_PHONE_STATE

8. Statement:

new Intent(..)

5. Method:

onActivityResult(..)

9. Statement:

new Intent(..)

3. Component:

SmsSenderActivity

6. Method:

onCreate(..)

10. Statement:

sendTextMessage(..)

12. Permission:

android.permission.
SEND_SMS

13. Permission:

android.permission.
WRITE_SMS

Figure 16: Analysis basis for the SimToSms App

and classified by the first line of any node’s label. Additionally the labels reference the part of
the code or the permission which is represented by this node. Let L be the set of all labels and
let vl ∈ V stand for the node with label l ∈ L. For example the node v4. Method: onCreate(..) has
number 4 and is classified as a Method node which represents the method onCreate(..)
of the component SimReaderActivity (see Line 6-17 in Listings 14).

3.4.2 GraphGenerator: Analyze Explicit Intents

Creating a graph with the analysis specific GraphGenerator is the second step. The
graph will represent the inter-component communication of the analyzed App. The Graph-
Generator will use another CoreService, namely the StatementAnalyzer (see
Section 3.2.3) in oder to find out if a statement is an explicit Intent definition. In that case the
StatementAnalyzer will provide a list of targets. Targets are other Android components
which could be identified as receivers of the defined Intent. The target list will be used for
the graph generation. A transition will be added from the Intent statement and its belonging
method and class to all the targets.
Let T be the set of all transitions. Then the analysis basis will be extended by these tran-
sitions and by that build the graph which is used in the next step. Gtree will be trans-
formed into the graph G = (V,E ∪ T). In the current example three edges will be added
as visualized by the green, dashed arrows in Figure 16. The start nodes of these edges are

31

3.4 Intra-App Permission Usage Analysis 3 IMPLEMENTATION DETAILS

Table 6: Decision table (Intra-App Permission Usage Analysis)
Permission-Group Question
assigned 1. 2. 3.
REQUIRED X X
MAYBE_REQUIRED X 7 X
UNUSED X 7 7

MISSING 7 X
MAYBE_MISSING 7 7 X

v8. Statement: new Intent(..), v4. Method: onCreate(..) and v2. Component: SimReaderActivity. The end node al-
ways is v3. Component: SmsSenderActivity.

3.4.3 Analyzer: Assign Permission-Groups

Based on the graph’s information and by the analysis specific Analyzer one PG will
be assigned to every permission at each node. Let P be the set of all available permis-
sions in the Android API and MaybeMore ⊆ V represent a set of nodes which have an
implicit Intent as descendant and by that may call another cooperating App. At first any
permissions assigned to a node v ∈ V will be assigned to all ancestors of v except the
root node. The root node represents the whole App in one node and only the permis-
sions described as used in the Android manifest are assigned to it. In addition for all
nodes u ∈ MaybeMore all ancestors will be added to MaybeMore. By that in the Sim-
ToSms example the permission android.permission.READ_PHONE_STATE is assigned to
the nodes v4. Method: onCreate(..) and v2. Component: SimReaderActivity. As well as the permissions
android.permission.SEND_SMS and android.permission.WRITE_SMS are assigned to the fol-
lowing nodes: v6. Method: onCreate(..) and v3. Component: SmsSenderActivity. In addition the nodes
v5. Method: onActivityResult(..), v2. Component: SimReaderActivity and v1. App: SimToSms are added to the
MaybeMore set, because of the implicit Intent represented by node v9. Statement: new Intent(..).

After transferring all permissions and filling up the MaybeMore set the Analyzer will
answer 3 questions for each node v ∈V and each permission p ∈ P:

1. Is permission p assigned to the visited node v?

2. Is permission p assigned to at least one child or descendant of v?

3. Is v in the MaybeMore set?

Question 1 will receive a positive answer if permission p has been assigned to node v. Question
2 checks if p is really required by a statement which is a descendant of v. A positive answer to
question 3 allows the possibility that p might be required or missing.

Based on all the answers the PG will be assigned to p at v. The Table 6 displays in which
case which PG will be assigned. The X-Symbol symbolizes a positive answer and the 7-Symbol

32

3 IMPLEMENTATION DETAILS 3.4 Intra-App Permission Usage Analysis

Figure 17: Intra-App Permission Usage Analysis: Textual result

a negative answer. If a cell is empty the answer to this question does not influence the outcome.
For example if v = v2.Component:SimReaderActivity and p = android.permission.READ_PHONE_-
STATE then the answers will be:

1. → X
2. → X
3. → X

Accordingly the PG that will be assigned to p at v is the REQUIRED PG. After assigning the
PGs to all permissions at each node the analysis ends.

3.4.4 Result Representation

In the following, based on the analysis result of the SimToSms App, the result representa-
tion is explained. The source code of the SimToSms App contains two statements which
are using permissions (see Line 10 and 53-54 in Listing 14). These statements are An-
droid API calls. In the first statement the method getSerialNumber() from the class
android.telephony.TelephonyManager is being called. The execution of this state-
ment requires the android.permission.READ_PHONE_STATE permission. The second state-
ment consists of the method call sendTextMessage(...) from class android.tele-
phony.SmsManager. This call in turn requires two permissions android.permission.SEND_-
SMS and android.permission.WRITE_SMS.

The Figure 17 shows the textual result representation of the example generated and dis-
played by the PAndA2 tool. A short analysis summary is given in the statistics-box. Since
there is a missing permission the App is categorized as not trustworthy. Only Apps without
any missing or maybe missing permissions are considered as trustworthy. In the main part
below the statistics-box we can see that the permissions android.permission.SEND_SMS and
android.permission.READ_PHONE_STATE are required and android.permission.WRITE_SMS
is missing indicated by the colors which are defined in the Legend at the top right corner. The

33

3.4 Intra-App Permission Usage Analysis 3 IMPLEMENTATION DETAILS

Figure 18: Intra-App Permission Usage Analysis: Graphical result

shown result is displayed on APP detail level and the filters are set up to show all PGs except the
MAYBE_MISSING one. On the other hand Figure 18 shows the graphical result representation.
It figuratively shows how trustworthy the App is: The ”greener” the bar on the left is the
trustworthier the App is. This pictorially description considers the PGs MAYBE_REQUIRED
and UNUSED as green and the MAYBE_MISSING and MISSING PG as red. It also represents
which permission belongs to which PG by the edges between the bar and the permission labels.
Not visible in any figure are the generated messages. In this example case there are three
messages. The first one is a suggestion that tells us to execute a deeper analysis (see Section 3.5)
in order to find out if the MAYBE_REQUIRED and MAYBE_MISSING permissions are really
required/missing. The second one is a error message which informs the user especially that
the analyzed App is missing a permission. The last message is a warning which is provided
because there are maybe missing permissions that may cause a data leak. Based on all these
information the user can reconsider the decision to use this App or investigate further where
and for what these permissions are used.

The result itself will be saved in another tree like data structure. Figure 19 partly illustrates
the analysis result of the SimToSms example. The root of such a tree is the result itself
which always has 4 children, one for each detail level (see APP, COMPONENT, CLASS
and METHOD nodes). Each child in turn contains one child per associated object e.g. the
SimReaderActivity. All objects have 5 children representing the PGs. And these children
finally hold the assigned permissions as leafs of the tree. This type of data structure makes
filtering and changing the detail level quite easy and fast, because the only thing we have to do
is selecting another subtree. On the other hand when it comes to memory efficiency another
data structure would perform better.

All in all the Intra-App Permission Usage Analysis will detect the possibility of data leaks
based on Android’s permission system and allows to start a detailed causal research based on
the analysis result. In comparison to other state-of-the-art taint analyses which mostly focus on
information flow analyses this analysis is less precise but in most cases a lot faster and often
sufficient (see Section 6.1). The next section will describe an extension of this analysis, which
makes it more precise and capable of taking more than one App as input.

34

3 IMPLEMENTATION DETAILS 3.5 Inter-App Permission Usage Analysis

Analysis Result

APP

REQUIRED

READ_PHONE_STATE SEND_SMS

.. MISSING

WRITE_SMS

CLASSES

..

COMPONENTS

SimReaderActivity

REQUIRED

READ_PHONE_STATE

..

SmsSenderActivity

REQUIRED

SEND_SMS

.. MISSING

WRITE_SMS

METHODS

..

Figure 19: Analysis result for the SimToSms App (Intra-App Permission Usage)

3.5 Inter-App Permission Usage Analysis

This type of analysis is an extension to the previously described Intra-App Permission Usage
Analysis (see Section 3.4). It uses the capabilities of our tool in order to check if an App is
or might be using any permissions. In contrast to the Intra-App Permission Usage Analysis
this analysis will identify cooperations between different Apps instead of only detecting the
possibility of such a cooperation. By that it will include multiple Apps into the analysis instead
of just one.

The analysis itself works almost exactly the same way the Intra-App Permission Usage
Analysis works. Each permission that is detected as being used in the analyzed App will be
categorized into one of the previously introduced Permission-Groups (PGs - see Section 3.4) and
in addition a differentiation will be made between direct and indirect use of these permissions.
A permission use is considered as direct, if there exists a statement in the source code of the
analyzed App that directly requires a permission. On the other hand indirect permission uses
are detected if one permission is accessed through another cooperating App. This fact leads to
the higher precision of this analysis. Instead of just determining the existence of a cooperation
itself this analysis will find the cooperating App and analyze exactly which permissions can be
accessed. Once the result is computed two detail levels are supported, namely COMPONENT
and APP.

The example presented before will be continued in this Chapter as well. By explaining
the analysis result of this example the benefit of this analysis will come out. But first of all
a second App that is cooperating with the SimToSms App is needed. This App is called
PhoneNumberToInternet and will be introduced now. It does exactly what the name suggests:
Uploading a phone number to the Internet (see Listing 2). In this case it is not any phone
number but the number of the SMS receiver which is defined in the SimToSms App. The

35

3.5 Inter-App Permission Usage Analysis 3 IMPLEMENTATION DETAILS

Figure 20: Inter-App Permission Usage Analysis: Overview

only permission required by this Application is the android.permission.INTERNET permission
which is used by calling the connect() method of the HttpURLConnection class (see
Line 12).

1 p u b l i c c l a s s PhoneNumberUploade rAc t iv i t y ex tends A c t i v i t y {
2 p u b l i c s t a t i c f i n a l S t r i n g SERVICE_NUMBER_DATA = "RECEIVER_NUMBER" ;
3
4 @Override
5 p r o t e c t e d void o n C r e a t e (f i n a l Bundle s a v e d I n s t a n c e S t a t e) {
6 S t r i n g phoneNumber = g e t I n t e n t () . g e t S t r i n g E x t r a (SERVICE_NUMBER_DATA) ;
7
8 t r y {
9 URL u r l = new URL(" h t t p : / / w e b s i t e . n e t / up loa d . php ? phonenumber="

10 + phoneNumber) ;
11 HttpURLConnect ion conn = (HttpURLConnect ion) u r l . openConnec t ion () ;
12 conn . c o n n e c t () ;
13 } catch (IOExcep t ion e) {
14 Log . e (" E r r o r " , e . ge tMessage ()) ;
15 }
16 }
17 }

Listing 2: Source code of PhoneNumberToInternet App

The next sections will show how this level of analysis is working in detail. Figure 20
figuratively summarizes the whole workflow of this analysis.

3.5.1 Enhancer Support: Collect Previous Results

As in every other analysis as a first step the Enhancer will be called. But since this analysis
is an aggregation analysis the Enhancer will work differently this time (This is the only
aggregation analysis that comes with our tool). The AnalysisRunner will run the Intra-App

36

3 IMPLEMENTATION DETAILS 3.5 Inter-App Permission Usage Analysis

1. App:

SimToSms

3. Component:

SimReaderActivity

6. Method:

onCreate(..)

10. Permission:

android.permission.
READ_PHONE_STATE

7. Method:

onActivityResult(..)

4. Component:

SmsSenderActivity

8. Method:

onCreate(..)

11. Permission:

android.permission.
SEND_SMS

12. Permission:

android.permission.
WRITE_SMS

2. App:

PhoneNumberToInternet

5. Component:

PhoneNumberUploaderActivity

9. Method:

onCreate(..)

13. Permission:

android.permission.
INTERNET

Figure 21: Analysis basis for the SimToSms and PhoneNumberToInternet App

Permission Usage Analysis on all input .apks, including the non-native .apks if the user has
provided any. Once all of these analyses are finished the Enhancer will only collect and
forward the results of these analyses. The collection of all these results represents the analysis
basis in this case. Figure 21 shows a cutout of this analysis basis with respect to the current
example. Basically it contains two trees representing the two different Apps (SimToSms and
PhoneNumberToInternet). The cutout does not display any statement nodes because the result
can only be displayed on APP or COMPONENT detail level and by that every detail of the
example can be explained based on this cutout. Nevertheless the full basis also contains nodes
for all statements in the Apps. The green, dashed arrows still represent the transitions based on
the explicit Intents. Let GSimToSms describe the part of the analysis basis with v1.App:SimToSms
as root node and GPhoneNumberToInternet the other part. Then the analysis basis G = (V,E) can
be defined as G = GSimToSms∪GPhoneNumberToInternet . Currently G is a disconnected graph that
consists of multiple connected subgraphs. These subgraphs might be connected with each other
in the next step.

3.5.2 GraphGenerator: Analyze Implicit Intents

The analysis specific GraphGenerator will now add transitions for the implicit Intents.
These are illustrated by the purple, dotted arrows in Figure 21. In order to compute these edges
the StatementAnalyzer is called again. It will provide a list of implicit Intent definition
statements and for each of these, a list of targets. Just as it did before for explicit Intents but
this time the targets are not required to be part of the analyzed App. They can be part of another
non-native App that has been provided as input. The exact way of finding targets is described
together with the StatementAnalyzer (see Section 3.2.3). As in the Intra-App Permission
Usage Analysis a transition will be added from the Intent statement and its belonging method
and class to all the targets. So lets assume T ′ represents all these transitions. Then the analysis
graph G′ can be build by transforming the analysis basis G into G′ = (V,E ∪T ′).

37

3.5 Inter-App Permission Usage Analysis 3 IMPLEMENTATION DETAILS

3.5.3 Analyzer: Assign Permission-Groups

The first thing the Analyzer of this analysis does, is transferring permissions. As before
any permissions assigned to a node v ∈ V will be assigned to it’s ancestors except any root
node. In the current example this will also transfer permissions from GPhoneNumberToInternet
to GSimToSms since both graphs are connected by the transitions in T ′. For example the an-
droid.permission.INTERNET is represented by the node v13.Permission:android.permission.INT ERNET .
All valid ancestors that can be found are: v9.Method: onCreate(..), v5.Component:PhoneNumberU ploader−
Activity, v7.Method:onActivityResult(..) and v3.Component:SimReaderActivity. The permission will be as-
signed to all these nodes. The same happens vice versa. So e.g. the permission android.permis-
sion.READ_PHONE_STATE will be transferred to v5.Component: PhoneNumberU ploaderActivity. Dur-
ing the analysis this transferring of permissions will be executed multiple times until a fixpoint
is reached. This is necessary because there could be an App that is getting access to a permis-
sion through another App, which in turn got access to this permission through a third App. The
fixpoint computation can get quiet complex if a lot of Apps are involved. Because of that we
implemented a worklist algorithm. The worklist WL is initialized with the whole set of nodes
WL =V . Once a node v is visited it will be removed from the worklist WL =WL\{v} and all
permissions assigned to it are transferred. If any node u /∈WL gets a new permission while
transferring, it will be added to the worklist WL =WL∪{u}. This process continues until the
worklist is empty WL = /0.
In addition while transferring permissions all indirect permission usages will be marked. So if
one permission is transfered via a transition t ′ ∈ T ′ this permission will get marked as indirect
for the target node of t ′. Accordingly let function indirect : V ×P→{true, f alse} describe a
function that returns true if the permission p ∈ P at node v ∈V is accessed indirectly and f alse
in any other case.
As in the Intra-App Permission Usage Analysis MaybeMore will specify a set of nodes that
have an implicit Intent as descendant, whose targets could not be found in the provided input
.apks.

Then the Analyzer will start assigning PGs to every permission p ∈ P at each node v ∈V0.
V0 correlates to V but it does not contain any node that stands for a statement or a method. It is
sufficient to use V0 for this computation since the available detail levels for this analysis are
APP and COMPONENT. In order to assign the PGs four questions will be answered this time:

1. Is permission p assigned to the visited node v?

2. Is permission p assigned to at least one child or descendant (u) of v..

2.1. and is indirect(u, p) = true?

2.2. and is indirect(u, p) = f alse?

3. Is v in the MaybeMore set?

Table 7 shows in which case which PG will be assigned. It also contains the differentiation
between direct and indirect access. Back to the current example this means that e.g. for

38

3 IMPLEMENTATION DETAILS 3.5 Inter-App Permission Usage Analysis

Table 7: Decision table (Inter-App Permission Usage Analysis)
Permission-Group Question
assigned 1. 2.1. 2.2. 3.
REQUIRED (direct) X X 7

REQUIRED (indirect) X 7 X
REQUIRED (direct & indirect) X X X
MAYBE_REQUIRED X 7 7 X
UNUSED X 7 7 7

MISSING (direct) 7 X 7

MISSING (indirect) 7 7 X
MISSING (direct & indirect) 7 X X
MAYBE_MISSING 7 7 7 X

v = v3.Component:SimReaderActivity and p = android.permission.INTERNET the PG MISSING
(indirect) will be assigned, because the questions are answered as follows:

1. → 7

2.1. → 7

2.2. → X
3. → 7

After assigning the PGs to all permissions at each node the analysis ends.

3.5.4 Result Representation

The result of the SimToSms and PhoneNumberToInternet example is displayed in Figure 22
(textual) and Figure 23 (graphical). The differences between this result and the result of the
Intra-App Permission Usage Analysis will be pointed out now. The most obvious and inter-
esting difference is that another missing permission could be found. Namely the permission
android.permission.INTERNET was previously assigned to the MAYBE_MISSING PG and is
assigned to the MISSING PG now. The reason is that the previous analysis could only find
out that another unknown App might be called but this analysis in turn could tell exactly that
PhoneNumberToInternet is the App which might be called. And since the PhoneNumberToInt-
ernet App is using the android.permission.INTERNET permission, the SimToSms App could
also get access to the Internet through this cooperating App. In fact, we know it does. The Sim-
ToSms App will send the phone number to the PhoneNumberToInternet App which will upload
it. This security breach could be found and identified by this analysis. But there is another
difference in these two results. The permission android.permission.READ_PHONE_STATE
is still considered as required but it could be accessed direct and indirect now. This again is
related to the fact, that the called App has been determined to be the PhoneNumberToInternet
App. Both differences can be recognized in the graphical result as well. The legend has been

39

3.5 Inter-App Permission Usage Analysis 3 IMPLEMENTATION DETAILS

Figure 22: Inter-App Permission Usage Analysis: Textual result

Figure 23: Inter-App Permission Usage Analysis: Graphical result

extended to show which permissions are indirectly accessed. With this more precise analysis
result it might be easier for the user to decide whether he wants to use this App or not.

As before the result itself will be saved in another tree like data structure. This structure
is very similar to the structure from the Intra-App Permission Usage Analysis. The only two
differences are, that on level 1 of the tree due to the restricted detail levels only two nodes
can be found and on the other hand that the direct/indirect information is saved along with the
permissions. A subtree of this result structure associated with the running example is illustrated
in Figure 24.

Finally it must be said that the PAndA2 tool’s framework made this extension very easy
to implement, because it could be done by simply extending the Intra-App Permission Usage
Analysis. And even if it generates an overhead by computing all the Intra-App Permission
Usage Analysis results first it is faster then most of the state-of-the-art information flow based
taint analyses (see Section 6.1). But of course it is less precise. However in many cases the
result of the Inter-App Permission Usage Analysis is sufficient e.g. if you want to detect
possible cooperations between Apps.

40

3 IMPLEMENTATION DETAILS 3.6 Intra-App Information Flow Analysis

Analysis Result

APP

REQUIRED

READ_PHONE_STATE

(direct & indirect)
SEND_SMS

(direct)

.. MISSING

WRITE_SMS

(direct)
INTERNET

(indirect)

COMPONENTS

.. SimReaderActivity

REQUIRED

READ_PHONE_STATE

(direct & indirect)

.. MISSING

INTERNET

(indirect)

Figure 24: Analysis result for the SimToSms App (Inter-App Permission Usage)

3.6 Intra-App Information Flow Analysis

In this chapter we give some details about the way we implemented the Intra-App Information
Flow Analysis (IFA). Special attention is payed to the algorithms and concepts used and to the
changes regarding the description in the Architecture Document.

The Intra-App Information Flow Analysis analyzes an application to detect whether there is
critical information flow inside that application.

Consider for example again the SimToSms application from the previous sections which
is shown in Listing 14. Information is flowing from the statement getSimSerialNumber()
in the SimReaderActivity to sendTextMessage(...,simSerialNumber,...)
in the SmsSenderActivity.

Our IFA detects this critical flow and provides the possibility to display the result. This anal-
ysis is structured in the three components Enhancer, GraphGenerator and Analyzer
to meet the requirements given by the overall framework. In the following we focus on the
GraphGenerator and Analyzer.

Based on the input given by the Enhancer, the GraphGenerator builds the Program
Dependence Graph (PDG). The PDG then is used in the Analyzer, which executes the three
steps:

• Compute sources and sinks

• Perform a backward slicing procedure on the Program Dependence Graph

• Find paths between sources and sinks

41

3.6 Intra-App Information Flow Analysis 3 IMPLEMENTATION DETAILS

Figure 25: Workflow of the Intra-App Information Flow Analysis

The just described workflow of this Intra-App Information Flow Analysis in shown in Figure 25.

In the following we explain in Section 3.6.1 how we integrated the Soot framework into the
Intra-App Information Flow Analysis. In Section 3.6.2 we describe the GraphGenerator.
This is done by explaining which parts the Program Dependence Graph consists of and how
it is computed. Afterwards we describe the Analyzer in Section 3.6.3. In this section we
give some details about the concept we used to identify sources and sinks. Furthermore, the
backward slicing algorithm used for this analysis is described as well as the concept of our
path finder. Finally, the Section 3.6.4 deals with the textual and graphical representation of the
analysis result for our Intra-App Information Flow Analysis.

3.6.1 Soot framework support

In addition to the support provided by Soot to the Enhancer, the Intra-App Information Flow
Analysis requires more information regarding information flow through the Android application
under analysis. The Program Dependence Graph(PDG) is built upon the analyzed application’s
call graph and unit graphs. Unit graph in Soot represents control flow between statements
within a method. More details about PDG construction is provided in Section 3.6.2.

To build the PDG, we need the classes, methods and statements of the Android application.
In addition we will also need formal actual parameters for methods. We also have to analyze
statements that define local variables and statements that use the local variables. To get these
information from Soot to build the PDG, we define our own analysis and inject into Soot
framework. This is done by a component extending Soot’s BodyTransformer class. The
analysis graph will need unit graphs for each method in the analyzed application. A map of
each SootMethod and its unit graph is created. This map will be used to add control flow
transitions from each method to the statements in that method.

We will be using SmartLocalDefs utility offered by Soot to identify statements that
define local variables. SmartLocalDefs implements Reaching Definition Algorithm to
identify statements that define or modify a variable at a particular point of execution. Smart-
LocalDefs implements a forward flow analysis technique. We initialize the constructor

42

3 IMPLEMENTATION DETAILS 3.6 Intra-App Information Flow Analysis

of SmartLocalDefs class with the unit graph of a method. The method getDefsO-
fAt(...) will return a list of all statements that define or modify the value of a local variable
at a particular point of program execution. Then we obtain the list statements that define each
variable. We create a map of statement where a variable is used and statements that define the
variable. This map will be used to add Data flow transitions to the analysis graph.

Dummy Main Soot’s call graph algorithm is designed to start at a program’s single entry
point, look for other method calls and the call graph will be constructed. In case of normal Java
programs, the entry point will be the public static void main(...) method. Soot
constructs the call graph with the main() method as a starting node. Then all method calls inside
the main() method are obtained and added to the call graph. However, for Android programs,
there is no single point of entry. In Android applications, the classes extend pre-defined
Android Operating System classes such as Activity and over-write life cycle methods
such as void onCreate(...). During the application’s execution, the Android Operating
System instantiates these classes and calls the life cycle methods at pre-defined stages. The
call to the method Activity.onCreate(...) will never be known to Soot as the call to
this method is hidden inside the Android Operating System implementation. Therefore, the
generated call graph of the Android application will be empty.

In order to overcome this, we create our own entry point method. This entry point method
will model all the calls the Android Operating System will make during the execution of the
application. In the following paragraphs, we explain how the dummy main method is created
and how invoke statements are added to the dummy main method body. The dummy main
method has two invoke the constructor methods of Android component classes, Android life
cycle methods and call back methods. We will describe how these methods are identified and
how invoke statements are added to the dummy main method.

Creating Dummy Main method The first step is to create a new SootClass with the name
dummyMainClass. This class will then be added to the Scene and will be set as an Ap-
plication Class. A new method with the name dummyMain is created and is added to the
dummyMainClass. At the end of first step, we have a SootClass dummyMainClass with
one empty SootMethod dummyMain().

As stated earlier, to have a complete call graph, the dummy main method should call or
invoke all methods which will be potential entry points for the Android application. This is
done by adding Jimple invoke statements to the dummyMain() method body. First we
start with creating invoke statements for constructors of Android component classes namely
Activity, Broadcast Receiver, Service and Content Provider. In addition, Android applications
might also extend the Application class to maintain global application state. Class local
variables are created using Soot’s LocalGenerator functionality. Then invoke statements
are constructed using this class local variable. We create invoke statement for the constructor
of the Android component class. Then we analyze the application to identify Android life

43

3.6 Intra-App Information Flow Analysis 3 IMPLEMENTATION DETAILS

Android Components Life cycle and Call back methods
Activity Life cycle methods:

onCreate(), onStart(), onResume(),
onStop(), onRestart(), onDestroy(),
onPause()
Call back methods:
onActivityStarted(), onActivi-
tyStopped(), onActivitySaveIn-
stanceState(), onActivityResumed(),
onActivityPaused(), onActivityDe-
stroyed(), onActivityCreated()

Service Life cycle methods:
onCreate(), onStart(), onStartCom-
mand(),onBind(),onRebind(), onUn-
bind(), onDestroy()
Call back methods:
onDeletedMessages(), onError(), on-
Message(), onRecoverableError(),
onRegistered(), onUnregistered(),
onDeletedMessages(), onMessageRe-
ceived(), onMessageSent(), onSendEr-
ror()

Broadcast Receiver Life cycle method:
onReceive()

Content Provider Life cycle method:
onCreate()

Table 8: Android components,life cycle methods and call back methods

cycle methods and call back methods. A comprehensive list of life cycle methods and call back
methods associated with the Android components is provided in Table 3.6.1. If one or many of
these methods are present in the Android application, we create and add invoke statements for
these methods to the dummy main method.

For example, consider an Android application having an Activity class ActivityA with
two life cycle methods onCreate(...) and onStart(). Then, the dummy main method
generated by our tool for this application will look similar to the code in Listing 3.

1
2 p u b l i c s t a t i c vo id dummyMain (j a v a . l a n g . S t r i n g [])
3 {
4 A c t i v i t y A $r0 ;
5 a n d r o i d . os . Bundle $r1 ;

44

3 IMPLEMENTATION DETAILS 3.6 Intra-App Information Flow Analysis

6 $r0 = new A c t i v i t y A ;
7 s p e c i a l i n v o k e $r0 . < A c t i v i t y A : void < i n i t > () > () ;
8 $r1 = new a n d r o i d . os . Bundle ;
9 s p e c i a l i n v o k e $r1 . < a n d r o i d . os . Bundle : void < i n i t > () > () ;

10 v i r t u a l i n v o k e $r0 . < A c t i v i t y A : void o n C r e a t e (a n d r o i d . os . Bundle) >($r1) ;
11 v i r t u a l i n v o k e $r0 . < A c t i v i t y A : void o n S t a r t () > ;
12 }

Listing 3: Dummy Main with invoke statements added

Identifying Call Back Methods The last step is to add invoke statements for the call back
methods that the application developer might have implemented. In general, there are two ways
of implementing call back methods. The developer can implement listeners in the code, which
when triggered will invoke call back methods. Call back functions can also be declared in the
XML layout files when defining user controls.

Consider the following example in Listing 4. We have a layout XML file, which has a
Button control declared. For the Button control, a call back method onContact(...) is
declared. The XML Layout Parser will identify this method as a call back method. We will
then add invoke statements for this method to the dummy main method.

1 < R e l a t i v e L a y o u t . . .
2
3 < B u t t on
4 a n d r o i d : i d ="@+ i d / b u t t o n _ c o n t a c t "
5 a n d r o i d : l a y o u t _ h e i g h t =" w r a p _ c o n t e n t "
6
7 a n d r o i d : o n C l i c k =" o n C o n t a c t "
8
9 / >

10 </ R e l a t i v e L a y o u t >

Listing 4: Call back method in Layout

From the XMLLayoutParser (see Section 3.2), we obtain a mapping of Layout XML
file names and the call back method names defined in each Layout XML file. Even though
we can obtain the names of call back methods by parsing layout XML files, we have no
information about the activity classes to which the layout files are linked. In the Android
source code, an Activity class is linked to its XML layout file by the Android library
method setContentView(...). The method takes the Resource ID of the layout file as a
parameter.

Consider the following example in Listing 5, the layout for the Activity class Main-
Activity is set by calling the function setContentView(...) within the onCre-
ate() method. The parameter for the method setContentView() is an Integer value
R.layout.activity_main.

45

3.6 Intra-App Information Flow Analysis 3 IMPLEMENTATION DETAILS

Figure 26: Identifying Android call back methods from XML Layout file

1 p u b l i c c l a s s M a i n A c t i v i t y ex tends A c t i o n B a r A c t i v i t y {
2 p r o t e c t e d void o n C r e a t e (Bundle s a v e d I n s t a n c e S t a t e) {
3
4 s e t C o n t e n t V i e w (R . l a y o u t . a c t i v i t y _ m a i n) ;
5 }
6 }

Listing 5: Example MainActivity

We have to look up the ARSC file to obtain layout file name corresponding to the Resource
ID used in the source code. From the CallBackAnalyser, we obtain a mapping of Android
component class names and the resource Ids of the layout file. Using the ARSCParser, we
will identify the class names of the Android components.

We analyze the Android application’s source code for any call back methods declared.
Android provides a set of interfaces, which the developer can use to implement call backs. For
example, the developer may want to call a method when a Button is pressed in the application.
One way the developer can achieve this is by using the interface View.OnClickListener
and overriding the method onClick(...). Our aim is to look for these overridden call back
methods in the source code. The example in Listing 6 gives an overview of the above described
scenario.

46

3 IMPLEMENTATION DETAILS 3.6 Intra-App Information Flow Analysis

1 M a i n A c t i v i t y ex tends A c t i o n B a r A c t i v i t y
2 implements View . O n C l i c k L i s t e n e r {
3
4 @Override
5 p r o t e c t e d void o n C r e a t e (Bundle s a v e d I n s t a n c e S t a t e) {
6
7 Bu t ton1 . . s e t O n C l i c k L i s t e n e r (t h i s) ;
8
9 }

10
11 @Override
12 p u b l i c vo id o n C l i c k (View v) {
13
14 }
15
16 }

Listing 6: Activity with call back regitrations

This analysis is done using the class CallBackAnalyser. We extend Soot’s Scene-
Transformer class. We need a list of Android interfaces that can be used to implement call
back methods. This list can be found in the file /data/androidcallbacks. We load
the Android component classes in Soot and get all the reachable methods. Then we analyze
all the invoke statements that implement the call back interfaces. If there is any call back
interface implemented, we obtain methods for this interface, check if any method implemented
by the interface is present in the analyzed application. In addition, we treat methods created by
developers by overriding Android library methods, as call back methods.

Finally, after adding all the invoke statements for class constructors, life cycle methods and
call back methods, the dummy main method is complete. This method will then be set as entry
point for Soot’s call graph construction algorithm.

3.6.2 GraphGenerator: Building the Program Dependence Graph

The Program Dependence Graph is built by analyzing the applications source code using Soot.
The first step is to obtain the application’s call graph and unit graphs from Soot. A dummy
main method is created and set as the entry point for the call graph. Soot builds the call graph
with the dummy main method as the root node. More information can be found in Section 3.6.1.
The next step would be to add various transitions between the nodes. This will be explained in
the following sections.

Control Flow The root node (dummy main method) of call graph is obtained and transitions
of type CONTROLFLOW are added between the dummy main method and all the methods
called by dummy main method. Then all the methods in each of the application’s class are

47

3.6 Intra-App Information Flow Analysis 3 IMPLEMENTATION DETAILS

obtained. CONTROLFLOW transitions are added between the methods and the other methods
called. Then using the unit graph of each method, we add CONTROLFLOW transitions between
the statements in the methods. CONTROLFLOW transitions are added between each method
and the first statement of that method.

Data Flow The transitions DATAFLOW are added between statements that define local vari-
ables and statements where the local variables are used. We will refer to the statement that
defines a variable as definition unit and the statement that uses the variable as use
unit. From Soot, we will obtain a mapping of each use unit in the Android application and a
list of definition units that define or modify the local variables that are used in the use unit. We
will then add data flow transitions with the definition unit as the source node and the use unit as
destination node .

Consider the following example. The method onCreate(...) has three units labelled
A,B and C. Unit C uses two variables simNo and imeiNo which are defined by previous units
A and B. Our analysis using Soot will return a mapping of unit C and a list containing A and B.
DATAFLOW transitions are then added between units A and C and between units B and C.

1 p u b l i c c l a s s M a i n A c t i v i t y ex tends A c t i o n B a r A c t i v i t y {
2 p r o t e c t e d void o n C r e a t e (Bundle s a v e d I n s t a n c e S t a t e) {
3
4
5 S t r i n g simNo = manager . ge tS imSer i a lNumber () ; −−−A
6 S t r i n g imeiNo = manager . g e t D e v i c e I d () ; −−−B
7
8
9 e x p l i c i t I n t e n t . p u t E x t r a (SIM_DATA, simNo + " " + imeiNo) ; −−−C

10 }
11 }

Listing 7: Adding Data Flow Transitions

Control Dependency This flow describes whether a statement is control dependent on
another statement. Statement B is control dependent on statement A if the decision whether B is
executed or not is dependent on the way statement A is evaluated. Typical statements on which
others are control dependent are those, in which conditions are evaluated, e.g. if-statements or
while-conditions.

When looking at Listing 8, which reflects the Lines 12 and 35-40 of the SimToSms applica-
tion (see Listing 14),

1 p r o t e c t e d void o n C r e a t e (Bundle s a v e d I n s t a n c e S t a t e) {
2 . . .
3 s imSer i a lNumber = s h o r t e n S i m (s imSer ia lNumber , 5) ;
4 . . .
5 }

48

3 IMPLEMENTATION DETAILS 3.6 Intra-App Information Flow Analysis

6
7 p r i v a t e S t r i n g s h o r t e n S i m (S t r i n g s imSer ia lNumber , i n t l e n g t h) {
8 i f (s imSer i a lNumber . l e n g t h () > l e n g t h) {
9 s imSer i a lNumber = s imSer i a lNumber . s u b s t r i n g (0 , 4) ;

10 }
11 re turn s imSer i a lNumber ;
12 }

Listing 8: Snippet from SimToSms App

it is obvious that the statement simSerialNumber.substring(0,4) in Line 9 is control
dependent on the statement if (simSerialNumber.length() > length) in Line 8
because its execution depends on whether the if-condition is evaluated successfully or not.
Control dependency is needed to take indirect information flow into account. Assuming
the integer value length contains critical data. Indirect information flow then means that
even though there is no information about the value of length flowing directly to the statement
simSerialNumber.substring(0,4), we know that if Line 9 is executed then the value
of the variable length is smaller than the length of the simSerialNumber.

In the Program Dependence Graph of our analysis we consider the control dependency
to take possible indirect information flow from a source to a sink into account. The control
dependency is computed in several steps according to Ferrante, Ottenstein and Warren [2] .

As basis for the computation the control flow graph is needed, since it describes possible
execution structures of the program. In most cases the control flow graph is not one connected
graph but consists of many independent parts describing the flow of the different methods.
Therefore, a common start and end node had to be defined which then leads to the starting resp.
ending points of the subgraphs.

Given the control flow graph with common start and end node the main challenge in comput-
ing control dependency was to generate the postdominator tree. Statement A is postdominated
by statement B if every path from A to the end of the program contains B, so every time A
is executed afterward B will be executed, too. The computation is done in our tool with the
algorithm by Lengauer and Tarjan [9], which computes a dominator tree for a given control
flow graph. The algorithm gets a control flow graph as input an then executes three steps. At
first a depth-first search on the input graph is performed to number all the nodes and generate
a spanning tree. Afterwards the semidominator of every node except for the root node is
computed. A semidominator of a node n describes the smallest node for which a path to n
exists such that all other nodes on the path were visited during the depth first search after node
n [9].

The last step in the algorithm then computes the dominator for each node. If the semidom-
inator of a node and the spanning tree are known, it is quite easy to compute the dominator
out of it. This is the case because the way the semidominators are computed makes sure that if
only the subgraph consisting of the spanning tree and edges from each semidominator to its
dominated node are taken into account then the dominators are the same as for the original

49

3.6 Intra-App Information Flow Analysis 3 IMPLEMENTATION DETAILS

graph [9]. After the three steps are executed the algorithm terminates and returns the dominator
tree.

To compute the postdominator tree one can simply take the reverse control flow graph as
input and compute the dominator tree of it which then is exactly the postdominator tree for the
original control flow graph.

After we created the postdominator tree, it is evaluated such that for every control flow edge
where the target does not postdominate the source we go upwards in the postdominator tree
beginning from the target and mark all nodes as control dependent on the source that are visited
before we reach the postdominator of that source according to Hammer [4].

At that point in the computation we have added control dependency edges for all nodes
which are dependent on a specific statement. The last step that had to be done to complete the
control dependency computation is then to add control dependency from all statements that
have no dependency edge yet to the corresponding method. This again is needed to model the
implicit information flow from the invocation of a method to its different statements.

Parameters The information flow between methods is displayed in our PDG via parameter
nodes and special parameter edges. There exist four types of parameter nodes and two types of
parameter edges connecting the nodes.

The four types of parameter nodes are

• ACTUAL_IN

• ACTUAL_OUT

• FORMAL_IN

• FORMAL_OUT

and the parameter edges are

• PARAM_IN

• PARAM_OUT

If there is information flowing through a parameter into a method or out of a method then
tracking the information through the parameter nodes will make the flow visible. Furthermore,
the special parameter edge type is used in the backward slicing procedure to create a context-
sensitive slice (see Section 3.6.3 for more details).

Each method with parameters gets one FORMAL_IN node per input parameter. For each
invokation statement which invokes one of these methods one ACTUAL_IN node per parameter
is created. The corresponding FORMAL_IN and ACTUAL_IN nodes then are connected via
the edge type PARAM_IN.

In addition to that, if a method has a return parameter, a FORMAL_OUT node is created for
that method and similar as for the input parameters for every invokation statement of that method
an ACTUAL_OUT node is created. These nodes then are connected via a PARAM_OUT edge.

50

3 IMPLEMENTATION DETAILS 3.6 Intra-App Information Flow Analysis

Invocation

ACTUAL_IN

FORMAL_IN

ACTUAL_IN

FORMAL_IN

Method

ACTUAL_OUT

FORMAL_OUT

Figure 27: Relations between Parameter Nodes

Figure 27 shows the relations between the parameter nodes. The invocation is the top node
which has ACTUAL_IN and ACTUAL_OUT nodes. These nodes are connected via the green
lines to their corresponding FORMAL nodes which belong to the method which was invoked
by the top node. The green lines therefore indicate the PARAM_IN and PARAM_OUT edges.

The following example visualizes the parameter edge and node creation. The method
shortenSim(...) from Listing 8 has two input parameters and a return value. In Line 3
it is called with the input values simSerialNumber and 5 and the result value is saved in
the variable simSerialNumber. Our Intra-App Information Flow Analysis would add to
the PDG of this example two parameter nodes of type FORMAL_IN representing the input
parameters of the method. These nodes are connected with the method via control dependency
edges. To the invokation statement in Line 3 two parameter nodes of type ACTUAL_IN are
added representing the input values simSerialNumber and 5.

The ACTUAL_IN node representing the value simSerialNumber is then connected via
a PARAM_IN edge to the FORMAL_IN node representing the parameter String simSe-
rialNumber. Similar the ACTUAL_IN node representing the value 5 is connected to the
FORMAL_IN node representing the parameter int length via a PARAM_IN edge.

In addition to these parameter nodes representing the input a FORMAL_OUT node is added
to the method via a control dependency edge. This node displays the return value of the method.

For the invocation statement in Line 3 a node of type ACTUAL_OUT is created and
connected to the FORMAL_OUT node via a PARAM_OUT edge.

Summary Edges Summary edges connect ACTUAL_IN and ACTUAL_OUT nodes (see
previous chapter) of an invocation if there is information flowing from the ACTUAL_IN node
to the ACTUAL_OUT node. These edges summarize interprocedural information flow if such

51

3.6 Intra-App Information Flow Analysis 3 IMPLEMENTATION DETAILS

exists and are needed to reduce computation time to get a context-sensitive backward slice in a
later step (see Section 3.6.3 for more details).

The computation of the summary edges is done according to the algorithm presented in [4],
which is an optimization of an algorithm presented in [10].

The algorithm uses a worklist in which edges are stored. It starts at the FORMAL_OUT
nodes and searches backwards to find a FORMAL_IN node of the same method. If such
a FORMAL_IN node is found, a summary edge is added for each invocation from each
corresponding ACTUAL_IN node to the ACTUAL_OUT node of the same invocation. For
more information on how the algorithm searches for such a FORMAL_IN node see [10].

Consider for example the method shortenSim(String simSerialNumber, int
length) from the SimToSms application (Lines 35-40 in Listing 14). In this method there is
information flowing from the input parameter simSerialNumber to the return value. There-
fore, for each invocation of this method a summary edge will be added from the ACTUAL_IN
node representing the input parameter simSerialNumber of the invocation statement to the
ACTUAL_OUT node. For the SimToSms application this will be the invocation statement in
Line 12.

Call Edges Call edges connect a caller and its call site. These edges were added to our PDG
straightforward by searching for callers and connecting them to their callee. The corresponding
callee we could get easily through the datastructure given by soot.

Consider for example Line 10 in Listing 14 which is the statement

String simSerialNumber = manager.getSimSerialNumber().

Since this statement calls the method getSimSerialNumber a call edge from this invoke
statement to the method getSimSerialNumber is added to the Program Dependence
Graph.

Call dependencies had to be modelled with this special type of edges to perform a context-
sensitive backward slicing procedure in a later step of the analysis (see Section 3.6.3 for more
details).

In addition to connecting callers and callees we use call edges to describe the flow that
might appear when using explicit intents (see next paragraph for more details).

Intents Since our Intra-App Information Flow Analysis was created especially for Android
applications some special cases have to be taken into account. Besides the dummy main method,
which was described in Section 3.6.1 one important concept is the way how intents are handled.

The PDG has to be enriched with some additional edges to be able to track whether
information is flowing via an intent from one activity to another. We decided to describe this
behavior by adding call edges from where an intent is started to the activity the intent starts.

52

3 IMPLEMENTATION DETAILS 3.6 Intra-App Information Flow Analysis

Since we consider only explicit intents in this Intra-App Information Flow Analysis this can
be done straightforward. Furthermore, we explicitly had to add dataflow edges representing
the flow of information going into that intent up to the point where the intent is started.
This had to be done to make sure that the information put into the intent via methods like
putExtra(...) is tracked, too. This was not covered by the algorithms described in the
previous paragraphs because the methods called on the intent are not part of the source code of
the application and therefore, the information flow insode that method is traced. But by adding
the just mentioned dataflow edges we circumvented this problem.

Possible results of an intent have to be taken into account as well. Therefore, if an intent
is started with the method startActivityForResult(...), the statement in which
the result is set (setResult(...)) is enriched with an edge pointing to the method
onReceiveResult of the activity that started the intent.

Consider again the SimToSms application. Here the SmsSenderActivity is started
via intent in Lines 14-16 of Listing 14. While creating the PDG for this application PAndA2

will add an dataflow edge from the statement in Line 14 to the statement in Line 15, since
there information is added to the intent. Line 16 then is connected to Line 15 and finally
a call edge from the start of the intent in Line 16 to the activity SmsSenderActivity is
added. Since the intent is started and a result is expected (startActivityForResult) the
setResult statement (Line 57 in Listing 14) of the SmsSenderActivity gets connected
to the method onReceiveResult of the SimReaderActivity.

3.6.3 Analyzer: Finding Information Flow Paths

After the GraphGenerator finished building the Program Dependence Graph the Analyzer starts
its work. For the Intra-App Information Flow Analysis this means that based on the PDG as a
first step sources and sinks have to be identified. Afterwards, a backward slicing procedure
has to be executed to find out from which source to which sink information flow paths exist.
Finally, information flow paths have to be extracted. The following paragraphs describe these
steps.

Source and Sink Computer The next phase of the Intra-App Information Flow Analysis
is identifying source and sink. In Android application, the calls to library methods that get
sensitive data of current device’s system are considered as sources. On the other hand library
method calls which manipulate the sensitive data of current device’s system are seen as sinks. In
the analysis, since users want to know if there exists any flows of data protected by permissions
within a specific application, then only sources and sinks that require those permissions will be
taken into account. This phase is implemented by the class SourceAndSinkComputer in
the component Analyzer. It supports APIs that can allow the whole analysis to get a map of
source or sink statements associated with their permissions. Those APIs process all statements

53

3.6 Intra-App Information Flow Analysis 3 IMPLEMENTATION DETAILS

(in format of Jimple Code) existing in the input Android application to collect sources and
sinks.

As mentioned in the target level agreement, the PAndA2 tool attempts to support two types
of sources and one type of sinks. The first type of sources are method or library calls which
require permissions or execute on variables protected by permissions. Indeed, only the calls that
require permissions for running or getting secured data will be considered. The case execution
on variables protected by permissions will be omitted. Because the permissions protecting for
such those variables are the ones needed for execution of the method calls which return values
to those variables. If any calls, running on those variables, return values and assign them to
other variables, then the new ones again become protected by the permissions. The chain of
propagation therefore may exist and as a result of it there are many sources. However all of
those calls and those variables require the same permissions. That is the reason why only the
original calls which need permissions will be considered as source. The second type of source
is the return result of a component which requires permissions for starting up. In particular,
the method call setResult inside a component will be a source with permissions that are
required for launching the component. For sinks, only method or library calls that use protected
information propagated to their input parameters are considered. With respect to such that
types of sources and sinks, the PAndA2 tool uses a list of defined sources and sinks got from
another tool named SuSi [12] (see Table 3.2.2 for more information).

In addition to meet the requirement of the PAndA2 tool, the list is generated by SuSi
[12] for Android APIs version 22. The lists of sources and sinks contain both protected and
unprotected method calls. However as a remark at the beginning of this phase, the PAndA2 tool
only processes sources and sinks which require permissions.

Based on the lists of defined sources and sinks, the phase checks all statements of an input
application and collects those which are considered as sources (or sinks). The phase carries
out the process to identify statement by comparing string objects. In particular, the basic
information such as name (of package, class and method), as well as parameter’s type of a
method call in a statement will be extracted. Then based on those information, the phase checks
if that method call exists in the list of defined sources or sinks. After identifying a statement as
a source or a sink, the EnhancedInput object is used to get the corresponding permissions
to that statement. If the permission exists, then it and the statement will be added to the result
map, otherwise the statement will be skipped. For example in the snippet code SimToSms
14, there are two method calls which after being checked by using the list of defined sources
and sinks are a source and a sink. The first one is getSimSerialNumber(...). It is
a source and requires permission android.permission.READ_PHONE_STATE. The other is
sendTextMessage(...) which is a sink. It needs android.permission.SEND_SMS and
android.permission.WRITE_SMS for execution.

Backward Slicing Computing After building the Program Dependence Graph as well as
collecting a list of source and sink statements, the third phase - in the Intra-App Information

54

3 IMPLEMENTATION DETAILS 3.6 Intra-App Information Flow Analysis

Flow Analysis - mainly takes responsibility for extracting a set of source statements which
have flow path(s) to a specific sink statement in the graph. Instead of traversing the graph
forward from each source in the list of source statements until reaching sinks, this phase will
go backward the graph from a sink by applying the backward slicing algorithms [4].

The class implementing this phase is the BackwardSlicer. It requires the Program
Dependence Graph, and a set of source statements as input parameters to process for each
sink. However source and sink statements can be either in a same method (procedure) or
even in different methods or classes, this phase therefore not only deals with the intra- but the
inter-procedure analysis also. In particular, the class applies the algorithm on the PDG which
consists of both intra- and inter-procedure information flow (see Section 3.6.2 for more details).

The process starts traversing the graph from the slicing criterion - the specified sink . It
is carried out in two steps to deal with context-sensitivity and context-insensitivity. In the
first step, the process considers a specific node and then gets a list of its predecessors. The
list is filtered out with transition only of type of DATAFLOW, CONTROLDEPENDENCY,
CALL, SUMMARY and PARAMIN. In addition, the first step also ignores parameter nodes
which have transitions of type of FORMAL_OUT. The purpose of the first step is to make
sure that all flows within a method as well as all flows from other callers to the method are
checked. A list of all skipped parameter nodes having transitions of type FORMAL_OUT
in the first step will be processed in the second one. In this step, the process again gets a
list predecessors for each of these parameter nodes and only considers transition of type of
DATAFLOW, CONTROLDEPENDENCY, SUMMARY and PARAMOUT. The second step does
not take into account the CALL and the PARAMIN transitions because its purpose is just to
deal with the current checked method not the callers. During traversing backward the graph,
if a node is an instance of Unit and is existing in the list of source statements (the input
parameter got from previous phase) then that node is identified as a source which has path(s) to
the specified sink. Traversing just stops when no further predecessor of current checked node is
found or when the total number of sources found for a sink is equal to the number of sources
existing in the input list of source statements. The two steps might have two different sets of
sources for the specified sink therefore the final result will be a union of both sets of sources.

Computing Paths Between Source And Sink With the help of the BackwardSlicer,
we discovered pairs of source and sink between which an information flow exists. For the final
step of our analysis, we compute all paths of direct and indirect information flow between
the source and sink pairs. We define a path as a sequence of connected transitions in the
Program Dependence Graph (PDG). For computing the paths, we introduce the functional class
PathFinder which we did not mention in our Architecture Document.

Given a pair of source and sink, the PathFinder stepwise traverses all transitions outgoing
from the source until the sink is reached. Transitions of all types are traversed with two
exceptions:

55

3.6 Intra-App Information Flow Analysis 3 IMPLEMENTATION DETAILS

1. We do not consider transitions of type CONTROLFLOW since they are not part of the
official PDG introduced by Hammer in [4].

2. We do not consider transitions of type CONTROLDEPENDENCY that point to a param-
eter node. Those transitions to fixate parameter nodes to the corresponding methods.

3. We do not consider transitions of type SUMMARY because that type of transition is only
used to speed up the backward slicing.

By traversing the transitions in a depth-first search behavior, the PathFinder creates a path
according to the given rules above. We call two paths distinct if and only if they differ in at least
one transition. The computation of the PathFinder terminates if all distinct paths between
the pair of source and sink were found. This is the case when the whole subgraph originating
from the source node has been discovered by the PathFinder.

After the analysis is finished, the computed paths will be presented to the user as part of the
result. Therefore, the found paths are additionally edited and finalized by the PathFinder.
This means, that the PathFinder removes all parameter nodes from the paths since these
are only helper nodes for the BackwardSlicer and cannot provide additional information
in the final result. The removal procedure is the following: Any transition sequence x→ p1→
·· · → pn→ y, where x and y are nodes of source code elements (class, method or statement)
and p1, . . . , pn are parameter nodes, will be replaced by the transition x→ y. Moreover, the
PathFinder adds the source permission at the beginning and the sink permission at the
end of each path. By that, all paths contain the required information without any disturbing
overhead and, hence, are ready to be shown to the user.

3.6.4 Result Representation

As for the result representations for the analyses described above (see Sections 3.4.4 and 3.5.4),
the Information Flow Analysis also provides a textual and a graphical representation. While
both representations take different approaches in visualizing the result, they share common
detail levels. These detail levels are listed below, ordered from low detail to high detail:

1. RESOURCE TO RESOURCE: Only sinks and sources between which an information
flow exists are shown. Elements of the source code like classes, methods and statements
are hidden.

2. COMPONENT: Shows the same information as RESOURCE TO RESOURCE. Addi-
tionally, Android Components that are involved in the flow are shown.

3. METHOD: Shows the same information as COMPONENT. Moreover, general Java
classes and methods are displayed.

4. STATEMENT: Shows the same information as METHOD. Furthermore, all statements
that are part of the information flow are shown.

56

3 IMPLEMENTATION DETAILS 3.6 Intra-App Information Flow Analysis

Besides the detail levels, the result representations provide filtering for sources and sinks.
The result representations can become huge quickly with increasing detail level. Therefore,
we recommend the workflow of starting with detail level RESOURCE TO RESOURCE and
increase the detail level only for a subset of flow paths by using filters.

The Information Flow Analysis also supports SUMMARY and COMPARISON mode. In
SUMMARY mode all flow paths contained in the App source code are shown. In COMPARI-
SON mode two distinct sets of paths are displayed. The first set contains the removed paths,
namely paths that are in the previous version of the App but not anymore in the newer version.
The second set encloses the new paths that are not in the previous version but are newly added
to the newer version. Paths that stay the same between both versions will not be displayed in
COMPARISON mode.

The source code elements that are shown in both result representations are in Jimple syntax.
We received this Jimple code from Soot during the decompilation process of the .apk file.
Jimple code is a representation of Java source code that is based on three-address code. This
means that each statement will have at most three components. Therefore, the result might
contain additional statements that are not part of the original Java source code.

In the following, we describe the individual properties of the textual and graphical result
representation of the Intra-App Information Flow Analysis and give an overview of how to
interpret them.

Textual Result Of Intra-App Information Flow Analysis To show the result of analysis after
finishing, the PAndA2 tool provides users a textual mode in both command line and GUI. The
result of the Intra-App Information Flow Analysis is mainly shown with the data-flow paths
between permissions, if any exists. In the textual mode for GUI, the result is tabular in HTML
format with different information for each detail level.

The analysis result is stored in the class AnalysisResultLvl2a and Comparison-
AnalysisResultLVl2a corresponding to SUMMARY and COMPARISON mode. They
take the output of the previous phase PathFinder to process the results. The list of filters
for result contains permissions categorized into two types. One is source permission which
protects source method calls. The other one is sink permission which is required for execution
of sink method calls (see 3.6.3 for more details of source and sink method calls). If just source
permissions are selected, then all flow paths starting from the sources will be shown. It is
same for the case in which only sink permissions are chosen, all flow paths from any sources
leading to those sink permissions will be displayed. When both source and sink permissions
are specified, only flow paths starting from the sources and ending at the sinks will be depicted.
In case neither of them exists in the input Android application, obviously no flow path will
be found. Furthermore, based on the detail levels, the result can be grouped with common
information. For example, the result for the application SimToSms shown in the figure below,
in the Method level, is grouped in same class for methods.

57

3.6 Intra-App Information Flow Analysis 3 IMPLEMENTATION DETAILS

Figure 28: Textual result representation for the App SimToSms in Method mode

In addition to the result, the PAndA2 tool also collects some additional statistic regarding
information flow in the Android application. Particularly, the number of source and sink
permissions as well as the number of found paths existing between them will be collected.
However, the tool only shows distinguish results, if any already exist then they will be omitted.
Although the result of an application for each detail levels is derived from the same output of the
phase PathFinder, the statistics in each detail level are different. For example two different
paths starting from a permission to another one, the number of found paths for the detail
level Resource to Resource is only 1 and for the Statement is 2. One important
remark for the detail level Statement is that the statements shown in result are in Jimple
Code - an intermediate representation of Java source code when an Android application is
disassembled by Soot Framework. These Jimple Code statements can be changed later
on by specific format of users.

Graphical Result of the Intra-App Information Flow Analysis The result of an Intra-App
Information Flow Analysis can also be interpreted with the help of a graphical result repre-
sentation complementary to the textual result representation. In contrast to the textual result
representation, this representation tries to give an overview of all information flow paths and
their relation to reach other. It gives a good overview of all code elements and permissions that
are involved in information flows within the analyzed App. On the downside it can be difficult
to track a single path on a high detail level. In this case the textual result representation is more
suitable.

58

3 IMPLEMENTATION DETAILS 3.6 Intra-App Information Flow Analysis

Figure 29: Graphical result representation for the App SimToSms

The graphical representation consists of a graph where nodes are resources (source or sink),
classes, methods and statements. A special feature of the graph is that nodes can be nested.
In our case method nodes are nested inside class nodes and statement nodes are nested inside
method nodes. The types of nodes shown in the graph depend on the chosen detail level.
The transitions in the graph represent the discovered information flow between nodes. Each
transition has a path index attached to it. The index can be used to track a complete information
flow path through the graph. Moreover, the graphical representation provides the highlighting
of a path by clicking on a transition that is part of the path. Unfortunately, this useful feature
does not work within the PAndA2 GUI for now. But the result representation can be opened in
a general web browser where the path highlighting works fine.

In SUMMARY mode the graphical representation looks straight forward like described
above. For COMPARISON the paths and, hence, the transitions are colored for differentiation
between removed and newly added paths. Removed paths are shown in red color, while new
paths are shown in green color.

Figure 29 shows the graphical result represtaion of the Intra-App Information Flow Analysis
for the App SimToSms. The representation is in detail level COMPONENT. It shows two paths
from one source to two sinks. The two paths are differentiated by their labels. The first path la-
beled with 1 starts at the source android.permission.READ_PHONE_STATE and ends in the sink
android.permission.SEND_SMS. The other one ends in the sink android.permission.WRITE_-
SMS. The source and sink of both paths are serially connected through two Android components,
namely SimReaderActivity and SmsSenderActivity. If the graphical result is dis-
played in a browser both paths could be selected and thereby highlighted.

59

4 EXTENSIBILITY

4 Extensibility

This section describes how PAndA2 can be extended. Therefore, Section 4.1 deals with the
question how to include a new analysis or other result representations to PAndA2 . Afterwards,
Section 4.2 describes the approach to change the user interface and finally Section 4.3 deals
with the API level the tool supports and how this can be adapted.

4.1 Adding a New Analysis

For extending the functionality of PAndA2 by adding new analyses, the tool framework provides
several interfaces and classes to work with.

The interface AnalysisProcedure has to be implemented as the main part of the
analysis. The resulting class should contain the complete logic of the analysis. The interface
provides two methods for performing an analysis on an .apk file and for performing an
analysis on top of preceding analyses. The latter one can be user for analyzing multiple Apps.
Both methods return an instance of type AnalysisResult which will be passed to the
client.

Developers have to extend the general class AnalysisResult which stores the outcome
of the implemented analysis. Therefore, the methods for passing a textual and a graphical result
to the user have to be implemented. Both methods return a String. For the textual result we spec-
ified the String to contain a HTML5 document. We recommend to use table and list elements for
providing a well-structured result representation to the user. In Figure 30 we show an example of
how a textual result could look like.

Figure 30: Example of a textual result

It has a header section containing a statistics
block and a legend. The statistics block sum-
marizes the result. Below that is a list with
detailed information about the outcome of
the analysis.

For the graphical result, we refined the
specification according to the Architecture
Document. The graphical result will also
be provided in form of a HTML5 document.
However, since the result should be of graphical nature, the document should mainly con-
sist of SVG elements. Compared to the Graphviz DOT Language that we wanted to use
initially for the graphical result, SVG gives us more freedom in choosing a type of vi-
sual presentation. For example one could use graphs or charts for visualizing the analy-
sis result. In Figure 31 we show an example of how a graphical result could look like.
The figure shows also a header with statistics and legends. The statistics can be identical with
the textual result representation but does not have to be. The main content of the graphical result

60

4 EXTENSIBILITY 4.2 Integrating a new User Interface

consists of a pie chart that might show relations of different part of the outcome of the analysis.
On the right is also a bar chart that might show some absolute numbers of the outcome.

Figure 31: Example of a graphical result

For creating a header section with statis-
tics and legend, our framework provides
the class HTMLFrameBuilder. This class
creates a prestyled header where developers
can add custom rows for statistics and legend.
Moreover, it provides several options for in-
teraction and look, like the option to hide the
header automatically when the mouse hovers
over the result.

In general, we recommend to be creative and try to provide a most satisfiable results to
the user. Therefore, a styling and coloring should be applied that supports the readability and
understanding of the results. Moreover, we encourage developers to include tool tips or other
interactive features that can be achieved by using JavaScript or CSS. Inspirations for results
can also be taken from the result representations of our analyses. However, we also have to
sensitize the developers that using complex interactive HTML5 documents might not be able to
be interpreted by every GUI. In addition, we do not recommend to use any remote resources
from the web within the results since all analyses should also work offline. Last but not least,
we want the developers to be careful while developing the result representations since they are
responsible for creating valid HTML Strings. The framework does not check the Strings for
validity.

4.2 Integrating a new User Interface

In this section, the reader can find details about how to integrate a new User Interface to our
tool PAndA2 . To develop a User Interface the developer can follow any of the Architecture
models of their choice, but MVC will be a nice choice to develop on.

The newly developed User Interface should provide the options for the user to choose the
different levels of analysis and its modes if there is any. For example, in GUI, the user should
be provided the option to select the specific level of analysis and its mode. The input should be
validated by the User Interface so that the input parameters are correctly passed and are in the
scope of our available parameters. For example, the primary input should be the .apk file, so the
User Interface should be able to validate that the file is of .apk format. In our tool PAndA2 , we
are using JCommander to validate the user inputs in Command Line interface. The developer
can also use other libraries like JLine, JOpt Simple, JSAP, etc for Command Line Interface.

The developer can call the AnalysisFactory from our project PAndA2 . The Anal-
ysisFactory is created depending on user input, since there are three different levels of
analysis that can be performed by our tool PAndA2 , a separate AnalysisFactory is cre-
ated for each level of analysis. This value from the AnalysisFactory is eventually passed

61

4.3 Changing API 4 EXTENSIBILITY

to AnalysisRunner and the analysis is started. The developer can directly call upon the
functionality of AnalysisFactory and AnalysisRunner in their User Interface. Since
the components Client, which is the User Interface and the Analysis are independent of
each other it would be easy to use them separately.

In the AnalysisRunner, our entire analysis is performed depending on the user input.
We have Enhancer, GraphGenerator and Analyzer incorparated in the Analysis
component. Each sub-component performs a specific task during the analysis. The task
performed for each of the sub-component has been covered in detail in previous sections of our
documentation.

After the analysis has been complete AnalysisResult is generated, which is an HTML
document. With the HTML document, the result can be displayed in message, textual and
graphical representation. The graphical result can be presented using libraries like Graphviz
DOT Language or SVG elements, which we have used in our project to display the result. CSS
or JavaScript can be used to obtain the textual result.

In our project PAndA2 , to perform the analysis based on user input we have implemented a
Client Class, which has all the functionality to perform our different level of analysis. By ex-
tending Client class we have already developed ClientCommandLine and ClientGUI
to run our tool through Command Line and Graphical User Interface.

4.3 Changing API

The first commercial version of Android API, Android 1.0 was released on September 2007.
Since then, Google has released many versions of Android API.

In our tool, to generate the intermediate representation code, which is essential for all the
levels of our analysis, we should pass the API as input. To do that the Jar file of the API has to
be stored in the data folder in the PAndA2 implementation folder. This file path is directly used
in SootAdapter class in the implementation folder of PAndA2 package, to import the jar
file and to generate the intermediate representation code. Currently we are using Android API
22, So the Jar file of API 22 is stored in the data folder of the project, if we want to change the
API version we should replace the specific API’s Jar file with the current one.

PAndA2 simultaneously uses the API to get the API’s permissions, the API defines the
permissions of various versions of Android libraries. This information is used to link the layers
and then map the permissions of many versions of Android library. Our tool interacts with the
DataStorage while performing analysis to get all the APIs defined permissions of a specific
version of Android library. This information will be used for mapping and linking the layers in
the Enhancer.

In order to get the list of permissions, we use a tool called PScout [6]. PScout leverages
the Soot Java bytecode analysis framework to perform static analysis. Extracting permissions
from the Android source code is done in three phase. First, PScout identifies all the permission

62

5 QUALITY ASSURANCE

checks in the Android source code and labels them with the permission that is being checked.
Then, it builds a call graph over the entire Android source code including IPCs and RPCs.
Finally, it performs a backwards reachability traversal over the graph to identify all API calls
that could reach a particular permission check. Then PScout generates the following files

• All Mapping

• Published API mappings

• All API call mappings

• Intents Permissions

• Content Provider (URI Strings) with Permissions

• Content Provider (URI fields) with Permissions

• Android callbacks

More information about PScout generated files can be found in table 2.

The permission files are stored in the Data folder of our project implementation. The
DataStorage uses these permission file’s absolute path and imports these permissions as a
map, since its the mapping between API calls and the permissions. Then we have to specify
the API version in the apilevel file stored in data folder. We have to make sure that the version
entered in apilevel file and the files generated from PScout are of the same API level. For
example, if you have entered API level 22 in apilevel file then you should make sure that you
stored the permission files generated by passing API 22 to PScout.

There are two ways to get the API permission files, we can either download the permission
files for the specific API versions directly from their website 5. If the permission files for the
specific API is not available on their website, then we can always run PScout to get them.
PScout can be download from their website and it is available for the users under General
Public Licence.

5 Quality Assurance

This paragraph provides an introduction about quality assurance and what approaches, we have
taken to achieve it during the development of our PAndA2 tool.

Customers do not like to deal with defective software. They want their demands to be
delivered with high quality and that is where the need for quality assurance comes. Quality
assurance in software development or Software Quality Assurance (SQA) consists of processes
and methods which are intended to establish the quality, performance, or reliability, especially
before it is taken into widespread use [5].

5http://pscout.csl.toronto.edu/downloads.php

63

http://pscout.csl.toronto.edu/downloads.php

5 QUALITY ASSURANCE

The sources of bugs in a software system can range from one to hundreds. Caused by
programming errors, dependencies between code modules, poorly designed/documented code
and much more. Bugs cause software failure, which leads to loss of business, loss of data, loss
of money and sometimes the impact is so catastrophic that it even claims human lives. Hence
Software Quality Assurance assures quality software which is reasonably bug-free, delivered
on time, meets requirements and/or expectations, and is maintainable.

With respect to our tool, at several checkpoints we have evaluated the quality and consistency
of our tool to meet the requirements and specifications presented in Architecture Document.
We have followed standard procedures to drive our system, such as

• Obtain requirements.

• Determine project-related personal and their responsibilities.

• Determine test approaches and methods (Black box, White box, unit, integration etc
whichever are in scope.)

• Determine testing requirements (tools for coverage tracking, code quality and automation
etc.)

• Set initial schedule estimates, timelines, milestones where feasible.

• Write test cases or test scenarios as needed.

• Perform tests.

• Track problems/bugs and fixes.

• Follow a particular software lifecycle.

• Ensure functionality check along with development.

• Maintain coding standards and quality.

From product’s initial development till its delivery, all components of the tool are systemati-
cally subjected to various tests. From time to time utmost care has been taken to meet our goal
and objectives by keeping the requirements in mind. Some of the initial above points are already
described in Target Level Agreement, Architecture Document and to describe remaining points,
the content of this section is divided into the following sub-sections:

Types of Testing (Section 5.1) describes the approaches that we have taken for testing, in
our project.

Tools (Section 5.2) illustrates about the tools that we have used in Eclipse to ensure quality
and coding standards.

Automated Test Executor (Section 5.3) describes the functionalities of the test executor
that we have built to run numerous test cases at one go.

64

5 QUALITY ASSURANCE 5.1 Types of Testing

5.1 Types of Testing

Testing means ’analyzing’ operation of a system or application under controlled conditions and
evaluating the results. The controlled conditions should include both normal and abnormal
criteria to detect the behavior of a system, i.e. tester should intentionally attempt to make things
go wrong to find and eradicate all the behaviors which shouldn’t be there in the system and
keep only the expected ones.

We have followed standard testing techniques as follows throughout our development to
ensure quality in our tool:

5.1.1 Black box / Functional Testing

Black box testing is not based on any knowledge of internal design or code. The tests are based
on requirements and functionality, hence sometimes combined with Functional testing as well.

Test Case Test cases are built around specifications and generally derived from descriptions
of the software and requirements. Hence at first, we have gone through our architecture
document thoroughly to list down all the requirements of our tool. Then we have created a
bunch of small Android applications named as Testing Apps covering our requirements.
These testing applications are kept under folder test_resources of our PAndA2 project
and listed in Table 9 in three different groups along with the requirements covered by them.

As per the requirement of Black Box testing, the tester should be aware of what the software
is supposed to do. As a developer of the testing Apps, we knew what functionality it poses and
what could be the expected output when they are going to run in our tool. So we have used these
applications as test cases for our tool with the progress of development and accomplishment of
new functionalities. These tests are primarily functional in nature only to test the functionalities
of our tool.

5.1.2 White box testing with Unit Testing

White Box testing is based on the knowledge of the internal logic of an application’s code.
The tests are based on coverage of code statements, branches, paths and conditions. We have
combined White box testing with Unit testing as both focus on testing the functionality on a
granular level.

Unit Testing Unit testing is the most ’micro’ scale of testing to test particular functions
or code modules. It requires detailed knowledge of the internal program design and code.
Hence it is performed by developers for better reachability of code and goes side by side with
development.

65

5.1 Types of Testing 5 QUALITY ASSURANCE

Testing Apps
Group Covered Requirement
Apps for Intra-App Permission Us-
age • contains permissions related to some or all 5

permission-group i.e. REQUIRED, MAYBE_-
REQUIRED, UNUSED, MAYBE_MISSING ,
MISSING

Apps for Inter-App Permission Us-
age • contains cases for detecting Implicit intents or

Explicit intents
• contains cases for detecting both Implicit and

Explicit intents
• contains cases for detecting Direct and Indi-

rect permissions related to different permission-
group

Apps for Intra-App Information
Flow • contains CALL BACK methods

• contains life cycle methods of Android Activity
• contains life cycle methods of Android Broad-

cast Receiver
• contains life cycle methods of Android Service
• contains life cycle methods of Android Content

Provider
• contains different sets of Sources and Sinks
• contains different sets of flow paths between

Sources and Sinks
• contains conditional case for detecting flow

paths

Table 9: List of Testing Apps

66

5 QUALITY ASSURANCE 5.1 Types of Testing

Unit testing focuses on evaluating a single operation on a set of data rather than large
functions performing a number of different operations [5]. So the test cases emphasise more
on testing ’behaviour’ rather than testing methods. A few advantages of Unit testing are as
follows:

• Gives us the ability to verify that all behaviours work as expected with a set of inputs.
Also, we can determine if the function is returning the proper values and handling failures
during the course of execution with valid and invalid input.

• Helps us to identify failures in our algorithms and/or logic to help improve the quality of
the code as the development progresses with addition of new functionalities.

• Code remains well-tested so that we can prevent future changes from breaking the
existing functionality. Hence, as the project grows, we can simply run the tests that are
developed to ensure that existing functionalities aren’t broken when new functionalities
are introduced.

JUnit We have used the JUnit testing framework for writing unit test cases. JUnit is a regres-
sion testing framework for the Java programming language and can be easily integrated with
Eclipse [13].

Important features of JUnit test framework that we are leveraging are as follows [13]:

Fixtures is a fixed state of a set of objects used as a baseline for running tests.

• setUp() method which runs before every test invocation.

• tearDown() method which runs after every test method.

JUnit classes are the classes which is used in writing and testing JUnits.

• Assert which contain a set of assert methods.

• TestCase which contain a test case defines the fixture to run multiple tests.

For writing unit test cases, we have followed a set of rules to keep the code understandable and
maintainable. Sample code of a test class will look like,

1 p u b l i c c l a s s Mani fes tXMLParse rTes t {
2
3 Manifes tXMLParser mp ;
4 Enhanced Inpu t e i ;
5 S t r i n g p a t h ;
6
7 @Before
8 p u b l i c vo id se tUp () throws E x c e p t i o n {
9

10 t h i s . p a t h = " t e s t _ r e s o u r c e s / S i m p l e I n t e n t s . apk " ;
11 t h i s . mp = new Manifes tXMLParser (t h i s . p a t h) ; }
12

67

5.2 Tools 5 QUALITY ASSURANCE

13 @Test
14 p u b l i c vo id g e t L s t A c t i v i t i e s V a l u e t e s t () {
15
16 f i n a l L i s t < S t r i n g > a c t i v i t i e s ;
17 a c t i v i t i e s = t h i s . mp . g e t L s t A c t i v i t i e s () ;
18
19 a s s e r t E q u a l s ("com . mycompany . s i m p l e i n t e n t s .
20 M a i n A c t i v i t y " , a c t i v i t i e s . g e t (0) . t o S t r i n g ()) ; }
21
22 @Test
23 p u b l i c vo id g e t L s t A c t i v i t i e s N e g a t i v e t e s t () {
24
25 f i n a l L i s t < S t r i n g > a c t i v i t i e s ;
26 a c t i v i t i e s = t h i s . mp . g e t L s t A c t i v i t i e s () ;
27
28 a s s e r t N o t E q u a l s ("com . mycompany . s i m p l e i n t e n t s " ,
29 a c t i v i t i e s . g e t (1) . t o S t r i n g ()) ; }
30 }

Listing 9: Sample Test Class

• We have created a separate folder called test under our project PAndA2 and written
all the test packages (de.upb.pga3.panda2.test.*) under it following the same hierarchy
similar to the source code folder.

• We have created test classes following the same package hierarchy and same name
as in source code with a keyword ’Test’. For example, test class ManifestXml-
ParserTest.java for source class ManifestXmlParser.java.

• We have created test methods following the same name as in source code with a keyword
’test’ plus the functionality that is being tested. We have written one test method for
each functionality. So, if any method has different functionalities, then we have written
separate test methods to test the functionalities separately.

• In each test class, we have created the mock-ups (test data) in setUp() method. Then
we have written small test methods and verified through ASSERT. For example, we have
written two test methods getLstActivitiesValuetest() and getLstActiv-
itiesNegativetest() for source method getLstActivities() to check one
positive and one negative case.

• We have used the testing Apps as listed in Table 9 for creating the mock-ups (test data)
and written our test methods on top of that.

5.2 Tools

In this subsection, we have briefly described the tools that we are using in our project for
tracking code coverage and improving coding standards. After analyzing many tools that are

68

5 QUALITY ASSURANCE 5.2 Tools

Figure 32: Code Coverage displayed in Coverage window

currently available in the market, we have chosen the below mentioned tools and leveraged
its functionalities to achieve our goal. Also, we have described how far we have succeeded in
achieving our goal with the help of these tools.

5.2.1 EclEmma

EclEmma is a free Java code coverage tool for Eclipse, available under the Eclipse Public
License [7]. It basically helps in finding how much code has been covered by the JUnit test
cases written.

Why are we using EclEmma For code coverage, many tools are available in the market such
as Cobertura, CodePro, Coverlipse etc. But, we have chosen EclEmma for our project because
of its simple integration method with Eclipse and easily understandable result summarising
technique. Features of this tool that we are using and makes it different from the other existing
tools are as follows:

• Analysis: JUnit framework can be easily integrated with EclEmma for code coverage
analysis. After the analysis is finished, coverage results are immediately summarized
and highlighted in the Coverage View and in Java source code editors [7]. This helps in
finding out the percentage of code reached drilling down from package level to method
level on Coverage View as shown in Figure 32.

69

5.2 Tools 5 QUALITY ASSURANCE

Figure 33: Color code displaying the coverage in Java source editor

• Code highlighting: The result of a coverage session is directly visible in the Java source
editors [7]. For highlighting, we are using GREEN for full coverage, YELLOW for
partial coverage and RED for not covered lines as shown in Figure 33. This helps in
analyzing the areas for which additional test cases are required.

• Counters: It allows to summarize the coverage in instructions, branches, lines, methods
etc. It helps in analysing the coverage in different perspectives.

Usage We have used EclEmma for tracking our progress in writing JUnit test cases. As per
the best practices, we should test as much functionality as possible of our implementation with
JUnit test cases. Hence the tool helps in keeping a track on the code that is being reached
through JUnit test cases.

We have written test cases as described in the subsection 5.1.2, along with our development
so that the unit testing runs in parallel with the implementation phase. But it is not sufficient to
write only unit test cases. It is necessary to check if all possible areas are covered functionality
wise. From that perspective, testing team have monitored our progress with respect to code
coverage (method-wise) in every 10/15 days throughout development phase by using this tool
as shown in Figure 34. Tracking of progress from the result shown is actually very easy as the
user can check the area covered showed in percentage (%) starting from the package level to
the method level. Also user can open the code in the Java editor window and track the area
covered line-wise by looking at the customizable color code highlights.

Target and Outcome We had initially set our goal to cover at least 70% of the code through
unit test cases. Due to the usage of EclEmma, we were able to track down the areas not covered
through test cases, which actually lead us to decide what kind of unit test cases are needed
and in what number to cover the remaining functionalities. Hence we have achieved our target
and in fact, we have written 265 JUnit test cases covering more than 80% of the overall code

70

5 QUALITY ASSURANCE 5.2 Tools

Figure 34: Code Coverage tracking with time

(method-wise) except GUI. So currently 971 methods have been covered out of 1171 methods
(except GUI) through JUnit test cases.

5.2.2 PMD

PMD is an open source project designed to inspect Java code and point out possible bugs, dead
code and overcomplicated expressions [1]. It allows programmers to structure their code.

Why are we using PMD ’Good code’ is the necessity of a quality software which not only
works, but is reasonably bug free, secure, readable, maintainable and is properly structured [5].
Normally organizations have their coding ’standards’ that all developers are supposed to adhere
to. We have used PMD for following a particular coding standard in order to achieve quality
code in our project.

We have chosen PMD over other existing similar tools like CheckStyle, FindBugs because
of its rich customization features along with user-friendly results displaying technique.

Usage Features of this tool that we are using and makes it distinguishable are as follows:

• Violation overview: After the analysis has finished, code violation information is au-
tomatically available in PMD perspective. Then, users can look for violations drilling
down from package level to class level in Violation Overview and the exact line number
in Violation Outline window as shown in Figure 35. This feature has saved a lot of

71

5.2 Tools 5 QUALITY ASSURANCE

Figure 35: Code violations shown in Violation windows

Figure 36: Code violations shown in Java source editor

72

5 QUALITY ASSURANCE 5.2 Tools

Figure 37: PMD Rule set XML file

our effort as the developer can directly go to the exact line where the code violation has
occurred and take appropriate decisions to tackle it.

• Color highlighting: The result of Violation Outline is directly visible in the Java source
editors as shown in Figure 36. Color code highlights for identifying different sets of rule
violation, i.e. RED for Blocker, TURQUOISE for Critical, PINK for Important, GREEN
for Urgent and BLUE for Warnings. Through this we have analysed which kind of rule
violation has occurred and how severe it is.

• Analysis: PMD inspects Java code using a rule-based approach. It includes a series of
rules considered common in every Java application [1]. They are organized in rulesets
inside an XML-based file as shown in Figure 37.

By default PMD 4.0 gives 347 rules for checking code violations. We have revised the
ruleset, according to our usage and hence, currently we have 252 custom rules in use
grouped by Blocker, Critical, Important, Urgent and Warnings.

Outcome All the developers have used PMD for finding the code violations and analysed
them according to their severity.

In the course of time, PMD has helped us in finding problems like AvoidTrailingComma,
AvoidBranchingStatementAsLastInLoop, DuplicateImports, EqualsNull,
GuardLogStatement, SystemPrintln, UnnecessaryFullyQualifiedName,
UnusedImports, UselessParentheses, UseVarargs, UnreachableCode etc.
Refer SourceForge.Net Rulesets6 for more information about the code violation rules. As
per the availabilty of time, we were able to remove the violations under Blocker, Critical and
Important priority from our code base ignoring some of the violations due to the project specific
implementation.

Though we had very less time for ensuring coding standards, still we were able to remove
the most critical code violations from our code with the help of PMD in order to achieve a
quality code base.

6http://pmd.sourceforge.net/snapshot/pmd-java/rules/index.html

73

http://pmd.sourceforge.net/snapshot/pmd-java/rules/index.html

5.2 Tools 5 QUALITY ASSURANCE

Figure 38: Duplicate Code displayed in Similar Code view

5.2.3 CodePro

CodePro Analytix is a Java software testing tool for Eclipse for improving software quality and
reducing development costs. It is offered as a free download by Google [3].

Why are we using CodePro Similar kind of functionalities and copied fragments, leads
to code duplication in a project. That is where the need of Similar/Duplicate Code Analysis
comes.

We are leveraging Similar Code Analysis from CodePro Analytix tool due to its duplicate
code analysing technique on a very granular level. It not only looks for very similar code
throughout the project, but even finds the copied code with renamed or manipulated variables.
This makes refactoring code much faster and more efficient.

Usage Features of this tool that we are using and makes it user-friendly are as follows:

• Analysis: Similar Code view opens automatically when the analysis is complete and
the list of matches is displayed as shown in Figure 38, drilling down from package level
to classes. The user can click on a match to open the Compare Editor as shown in
Figure 39. Time to time, our testing team has Exported the result for later use or to share
among team members.

• Color highlighting: The editor shows textual differences between the matched code
snippets. GREEN lines designate identical code, YELLOW lines designate differing
code (with differing tokens highlighted with RED background), and RED lines designate
inserted/removed code.

This feature has saved a lot of our effort as the developer can directly look for the exact
difference in the piece of similar code and take appropriate decisions.

74

5 QUALITY ASSURANCE 5.3 Automatic Test Executor

Figure 39: Exact lines no. for matching code in Compare editor

Outcome For reducing the code duplication and for further code optimization, our testing
team has generated and analysed the similar code report time to time. We have found duplicate
code pieces in areas like GraphGenerator, Analyzer, Client due to similar function-
alities. With the analysed report, along with the developers we have taken further decisions to
remove the code duplications. We have optimized the code where ever possible in our code base
ignoring areas like Intra-app Resource Usage, Inter-app Resource Usage
for keeping a separation of concerns.

Though we had very less time for ensuring coding standards, still we were able to remove
most of the possible code duplications with the help of Similar Code Analysis in order to
achieve a quality code base.

5.3 Automatic Test Executor

As driving our development process sprints, there are changes, updates regularly. Alterations to
the source code of application can ripple outward in surprising ways, breaking functions that
seem completely unrelated to the new modification. So to make sure our tool still adhere to
the functions throughout the cycles, Regression tests i.e the test carried out after next
releases to safeguard the working of previous functionalities, needed to be carried out. Because
when we run regression tests, we are checking to make sure that our modification not only
behaves as we want it to, but that it also has not inadvertently caused problems in functions that
had otherwise worked correctly when previously tested. Each time we modify our source code,
we had simply re-ran the potentially relevant tests to ensure that they continue to pass. For the
same cause (RegressionTesting) we have built our own separate tool and named it Automatic
Test Executor (ATE).

Automatic Test Executor has its defined Test cases categorized. Test cases are made in
systematic defined hierarchical manner. Automatic Test Executor executes the Test cases

75

5.3 Automatic Test Executor 5 QUALITY ASSURANCE

sequentially using threads running on the nightly build and displays the result output on GUI
screen. It also has got the functionality to run on some previous builds (previous version of tool
as jar file input) rather nightly build which helps in the evaluation procedure. And on the top of
its basic function i.e. to evaluate the output of functional behavior of the tool, it also performs
basic analytics over the analysis result generated by PAndA2 .

Coming to basic outlook of all the functionalities that Automatic Test Executor performs,
they are as follows

• Consistency of tool with real-world .apk files
To make sure our tool is consistent with real-world .apk files with its functionalities,
we are analyzing .apk files in sets whether after updates or any alteration, is the code
still adhere to all the previous functionalities. Some big applications like WhatsApp
and application that needs bunch of permission like FileExplorer with their different
versions are taken into consideration with some of self-developed .apk files.

• Expected Result Analysis
This functionality in Automatic Test Executor performs tests to check the presence of
expected results in the original Analysis result computed by tool. As we have three
levels of Analysis in our tool so for all the levels, we can predict the result and check its
existence as

For Permission Usage (Intra App- Level 1)
User can list expected permissions as REQUIRED, MISSING, MAYBE_REQUIRED,
MAYBE_MISSING or UNUSED and the ATE will tell whether the expected permissions
exists in the Analysis result or not.

For Information Flow (Intra App- Level 2a)
During this level, user can expect path between SOURCE and SINK. ATE will further
check existence of such a path with the help of Flowpath obtained from the Analysis
result.

For Permission Usage (Inter App- Level 2b)
At this level, user can predict whether the specific permission has Indirect, Direct or
Both access within the applications. To test permission groups (REQUIRED,MISSING
etc.), user need to run PermissionUsage(IntraApp−Level1) .

• Exceptions Handling
Apart from validating the expected results and ensuring consistency, ATE also catches
and displays Exceptions if it encounters any during the execution of Test cases such as
missing files or any Internal exception thrown by tool like unable to fetch analysis result.

• Generation of Analysis Result
A successful generation of Analysis result will be reported to the user on screen right
after the processing of Test case. In case, the analysis result is not generated, it will tell
the user about that and will enter in state discussed above.

Now brief explanation of the above mentioned functionalities are as follows

76

5 QUALITY ASSURANCE 5.3 Automatic Test Executor

Figure 40: ATE WorkFlow

5.3.1 Workflow of Automatic Test Executor (ATE)

Automatic Test Executor (ATE) has a graphical user interface embedded in PAndA2 . It can
be started from AutomatedTestGUI.java, which when invoked run on the newly build
source code of PAndA2 automatically and requires path of the Test Cases. ATE can also be
started from command prompt in Windows or terminal using Linux by using the following
parameter
java -cp PAndA2.jar de.upb.pga3.ate.AutomatedTestGUI

As shown in Figure 40, ATE Generator will navigate through test cases directory (refer
section 5.3.2) and ATE Test Case will create input parameters to start analysis in PAndA2

via CommandLine Interface (refer section 3.1). Then it checks for the generation of Analysis
result or exceptions, messages if encountered any. Later, if Expected results mode, ATE will
compare the analysis result generated with the expected result of the user.

Once initiated, it will execute all the test cases and will display user, the following informa-
tion in text field.

• Whether the tool PAndA2 had successfully ran specific analysis.

• Whether any exceptions encountered.

• Whether the expected result matches the Analysis result.

77

5.3 Automatic Test Executor 5 QUALITY ASSURANCE

Figure 41: ATE Folder Structure

5.3.2 Structure of Test Cases:

To run the tool successfully, prior need to focus is the creation of Test cases. ATE has its
predefined structure which covers all the possible functionalities available in PAndA2 . Areas
to consider are as follows

Specific hierarchical structure For the generation of Test cases directory in ATE, defined
hierarchical structure is used as shown in Figure 41. It is basically grouping of test cases that
belong to one level together making sets and predefined naming structure. We just need to give
the address of Root node (e.g. ExpTests in Figure 41) as input parameter to ATE GUI and it
will traverse all through the test cases of its own.

Protocols for Expected Result file We have discussed how the test cases should be placed
in specific structure. In this section, a brief description of how the expected results be described
along with Test cases is provided. Basically we need to write statements in .txt file and
place them in the test case folder along with .apk file. For the different levels and different
expectations, we need to append a regex, which will be decrypted by the ATE while processing.
Example of which, categorized to different levels are as follows.

78

5 QUALITY ASSURANCE 5.3 Automatic Test Executor

For Permission Usage (Intra App- Level 1) At this level, user can check for MISSING,
REQUIRED, MAYBE_REQUIRED, UNUSED and MAYBE_MISSING permissions i.e. five
permission groups in the application. Syntax with example is here under

• :M (MISSING)

• :R (REQUIRED)

• :O (MAYBE_REQUIRED)

• :U (UNUSED)

• :G (MAYBE_MISSING)

e.g- If we are expecting android.permission.CAMERA to be MISSING, we should create a
text file and place in it the statement
android.permission.CAMERA:M

For Information Flow (Intra App- Level 2a) At this level, user can check for path between
SOURCE and SINK. User need to provide two statements for this. Syntax with example is
mentioned below

• :A (SOURCE)

• :B (SINK)

e.g-If we are expecting that android.permission.ACCESS_LOCATION_EXTRA_COMMANDS
is a SOURCE permission and android.permission.SEND_SMS to be SINK permission, then we
need to write two statements to text file, they are as
android.permission.ACCESS_LOCATION_EXTRA_COMMANDS:A
android.permission.SEND_SMS:B

For Permission Usage (Inter App- Level 2b) At this level, user can check for Direct,
Indirect or Both access of permissions between the applications. Syntax with example is
mentioned below

• :I (INDIRECT)

• :D (DIRECT)

• :B (BOTH)

e.g- If we are expecting the Direct access of android.permission.CAMERA between the
.apk files, then the statement to put in text file is
android.permission.CAMERA:D

Definition of Test cases We have some possibilities of functionalities while running the test
cases, in accordance we need to define the files inside the test cases. Basically there are three
possibilities which are explained below, on top of it third possibility has its combination with
first and second possibility. The brief description is as

79

6 EVALUATION

Summary mode For specification of a test in SUMMARY mode, we need to provide at
least one .apk file in our test folder. Tool will consider the test to be in Summary mode.
For PermissionUsage(IntraApp−Level1) and In f ormationFlow(IntraApp−Level2a), only
one .apk file is required while for PermissionUsage(InterApp−Level2b), multiple .apk
fiiles can be provided in input as it can contain one main application and other non native
applications. Non native applications are passed with suffix nn (e.g. DemoAppnn.apk).

Comparison mode For the COMPARISON mode, two inputs are required in which one
should be .apk file and another can be either .pa2 file (which is previous saved Analysis
result) or .apk file with suffix comp (e.g. DemoAppcomp.apk) at the same location inside
test case folder.

Expected Result mode Now on the top of the above two modes, If we want our tool to
perform an additional analysis for us i.e to validate our expected result in analysis result, we
need an additional .text file in the test case directory in combination with the structure
mentioned in either of the two cases mentioned above ie. an .apk file and .pa2 file. This
mode will be followed subsequently by the former ones.

5.3.3 Result Output:

The result or outcome of the tool can be seen in a GUI window which contains a text field that
displays the outcome of every test cases that the tool has been through after each execution. It
will update the user about its state or position by display field which keeps on updating itself as
the tool goes.

It displays the test case counter as shown in 42, if the analysis result has been successfully
generated or in case encountered any exceptions during the analysis and on top of it the
validation of User expected result with the result obtained from Analysis. General overview of
how the outcome will be like, with some of the Test cases result is shown in the Figure 42.

6 Evaluation

This chapter will cover the evaluation of our tool and especially the evaluation of the three
types of analysis which are delivered with PAndA2 . It will be evaluated if the analyses work as
expected. Additionally the accuracy of each analysis will be stated. And furthermore we will
compare our analyses to other state-of-the-art approaches. In order to do so three different sets
of Apps are used:

• Custom Apps
These are designed and implemented by the project group and used to turn out special
properties of our analyses.

80

6 EVALUATION

Figure 42: ATE Output

81

6 EVALUATION

• DroidBench
DroidBench7 is a collection of Apps provided by the Secure Software Engineering
Group. It is used for benchmarking Android taint-analyses based on Information Flow
approaches.

• Real-World Apps
All Apps in this set are downloaded from the Google Play Store8 and listed below:

– ADAC Pannenhilfe9

App of a german breakdown service which has the purpose to speed up call in
process.

– Adobe Acrobat Reader10

A basic PDF viewer that can be used to display PDFs from the device’s internal
storage or other sources.

– Barcode Scanner11

This App uses the camera to scan e.g. QR-Codes or barcodes.

– ES File Explorer12

A powerful file explorer that is able to access all possible file sources e.g. local
storage or network resources.

– Google Photos13

Google’s version of a gallery App. Its main task is to display the pictures stored on
the device.

– Instagram14

This App supports all the functionality of the famous website instagram.com.

– Tiny Flashlight15

A very simple App that allows the user to use the photoflash of her/his device as a
flashlight.

– WhatsApp Messenger16

This messenger App is currently the most downloaded App on the market. It is a
complex messenger with a lot of extra functions.

7https://blogs.uni-paderborn.de/sse/tools/droidbench/
8Downloaded from Google Play Store on 5th March 2016
9https://play.google.com/store/apps/details?id=de.adac.mobile.pannenhilfe

10https://play.google.com/store/apps/details?id=com.adobe.reader
11https://play.google.com/store/apps/details?id=com.google.zxing.client.

android
12https://play.google.com/store/apps/details?id=com.estrongs.android.pop
13https://play.google.com/store/apps/details?id=com.google.android.apps.

photos
14https://play.google.com/store/apps/details?id=com.instagram.android
15https://play.google.com/store/apps/details?id=com.devuni.flashlight
16https://play.google.com/store/apps/details?id=com.whatsapp

82

https://blogs.uni-paderborn.de/sse/tools/droidbench/
https://play.google.com/store/apps/details?id=de.adac.mobile.pannenhilfe
https://play.google.com/store/apps/details?id=com.adobe.reader
https://play.google.com/store/apps/details?id=com.google.zxing.client.android
https://play.google.com/store/apps/details?id=com.google.zxing.client.android
https://play.google.com/store/apps/details?id=com.estrongs.android.pop
https://play.google.com/store/apps/details?id=com.google.android.apps.photos
https://play.google.com/store/apps/details?id=com.google.android.apps.photos
https://play.google.com/store/apps/details?id=com.instagram.android
https://play.google.com/store/apps/details?id=com.devuni.flashlight
https://play.google.com/store/apps/details?id=com.whatsapp

6 EVALUATION 6.1 Intra- and Inter-App Permission Usage Analysis

The execution environment was a computer with a Intel i7 2600 (3.4 GHz) cpu and 8 GB
memory (6 GB assigned to Java virtual machine).

6.1 Intra- and Inter-App Permission Usage Analysis

This section focuses on the evaluation of the Permission Usage Analyses. It will be pointed
out, that both analyses work as intended. With more specific words, it will be shown that all
Permission-Groups are assigned as expected. Furthermore it will be evaluated if possibilities
of information leaks are successfully found and thereby the higher precision of the Inter-App
Permission Usage Analysis will be pinpointed.

6.1.1 Custom Apps: Description

In this first scenario four Apps, developed by the project group, are used to show that both
analyses work as expected. The Apps will not work on any Android device. They are only
feasible for the evaluation. As a first step the four Apps themselves are going to be described.
Then different analysis setups will be build based on these four Apps and the expected result of
each setup will be described and compared to the actual results generated by PAndA2 .

App 1: DirectApp The source code of this App can be found in Listing 10. This App is
directly accessing the Camera (Line 7) and the Internet (Line 14). By that it will require two per-
missions, namely the android.permission.CAMERA and the android.permission.INTERNET per-
mission. But only the android.permission.CAMERA permission along with the android.permission.-
VIBRATE permission, which is actually never used, is marked as being used by the App in it’s
Android manifest.

1 p u b l i c c l a s s D i r e c t A c t i v i t y ex tends A c t i v i t y {
2 @Override
3 p r o t e c t e d void o n C r e a t e (f i n a l Bundle s a v e d I n s t a n c e S t a t e) {
4 / / Use a n d r o i d . p e r m i s s i o n .CAMERA
5 f i n a l Camera cam = (Camera) g e t A p p l i c a t i o n C o n t e x t () .
6 g e t S y s t e m S e r v i c e (C o n t e x t . CAMERA_SERVICE) ;
7 cam . open () ;
8
9 / / Use a n d r o i d . p e r m i s s i o n . INTERNET

10 t r y {
11 f i n a l URL u r l = new URL(" h t t p : / / w e b s i t e . n e t ") ;
12 f i n a l HttpURLConnect ion conn = (HttpURLConnect ion) u r l .
13 openConnec t ion () ;
14 conn . c o n n e c t () ;
15 } catch (f i n a l IOExcep t i on e) {
16 Log . e (" E r r o r " , e . ge tMessage ()) ;
17 }

83

6.1 Intra- and Inter-App Permission Usage Analysis 6 EVALUATION

18 }
19 }

Listing 10: Source code of the DirectApp App

App 2: IndirectApp Listing 11 represents the source code of this App. It does not access any
permission directly but it uses an implicit Intent (lines 4-6) to call the previously described
DirectApp App. Thereby it might use any permission through the called App. Nevertheless the
android.permission.CAMERA permission is the only permission declared as being used in the
manifest file.

1 p u b l i c c l a s s I n d i r e c t A c t i v i t y ex tends A c t i v i t y {
2 @Override
3 p r o t e c t e d void o n C r e a t e (f i n a l Bundle s a v e d I n s t a n c e S t a t e) {
4 / / I n d i r e c t I n t e n t c a l l i n g Di rec tApp
5 f i n a l I n t e n t i n t e n t = new I n t e n t (" de . upb . pga3 . C a l l D i r e c t A p p ") ;
6 s t a r t A c t i v i t y (i n t e n t) ;
7 }
8 }

Listing 11: Source code of the IndirectApp App

App 3: DirectAndIndirectApp The third App is called DirectAndIndirectApp. It’s source
code is printed in Listing 12. This third App combines the first two Apps. It shares the two
statements which require the android.permission.CAMERA and android.permission.INTERNET
permission with App 1 as well as the implicit Intent which was used in App 2. As before the
only permission assigned as being used is the android.permission.CAMERA permission.

1 p u b l i c c l a s s D i r e c t A n d I n d i r e c t A c t i v i t y ex tends A c t i v i t y {
2 @Override
3 p r o t e c t e d void o n C r e a t e (f i n a l Bundle s a v e d I n s t a n c e S t a t e) {
4 / / Use a n d r o i d . p e r m i s s i o n .CAMERA
5 f i n a l Camera cam = (Camera) g e t A p p l i c a t i o n C o n t e x t () .
6 g e t S y s t e m S e r v i c e (C o n t e x t . CAMERA_SERVICE) ;
7 cam . open () ;
8
9 / / Use a n d r o i d . p e r m i s s i o n . INTERNET

10 t r y {
11 f i n a l URL u r l = new URL(" h t t p : / / w e b s i t e . n e t ") ;
12 f i n a l HttpURLConnect ion conn = (HttpURLConnect ion) u r l .
13 openConnec t ion () ;
14 conn . c o n n e c t () ;
15 } catch (f i n a l IOExcep t i on e) {
16 Log . e (" E r r o r " , e . ge tMessage ()) ;
17 }
18

84

6 EVALUATION 6.1 Intra- and Inter-App Permission Usage Analysis

19 / / I n d i r e c t I n t e n t c a l l i n g Di rec tApp
20 f i n a l I n t e n t i n t e n t = new I n t e n t (" de . upb . pga3 . C a l l D i r e c t A p p ") ;
21 s t a r t A c t i v i t y (i n t e n t) ;
22 }
23 }

Listing 12: Source code of the DirectAndIndirectApp App

App 4: MaliciousApp The last App’s name is MaliciousApp (see Listing 13). This last App
uses the android.permission.VIBRATE (Line 7). This is also the only permission that is marked
as begin used in the App’s manifest file. Furthermore it contains a valid implicit Intent that
allows this App to call App Number 2 and 3.

1 p u b l i c c l a s s M a l i c i o u s A c t i v i t y ex tends A c t i v i t y {
2 @Override
3 p r o t e c t e d void o n C r e a t e (f i n a l Bundle s a v e d I n s t a n c e S t a t e) {
4 / / Use a n d r o i d . p e r m i s s i o n . VIBRATE
5 f i n a l V i b r a t o r v i b = (V i b r a t o r) g e t A p p l i c a t i o n C o n t e x t () .
6 g e t S y s t e m S e r v i c e (C o n t e x t . VIBRATOR_SERVICE) ;
7 v i b . v i b r a t e (1 0 0 0) ;
8
9 / / I n d i r e c t I n t e n t c a l l i n g I n d i r e c t A p p and D i r e c t A n d I n d i r e c t A p p

10 f i n a l I n t e n t i n t e n t = new I n t e n t (" de . upb . pga3 . Ca l lO the rApps ") ;
11 s t a r t A c t i v i t y (i n t e n t) ;
12 }
13 }

Listing 13: Source code of the MaliciousApp App

Summary Table 10 shows a summary of the properties of these four Apps. Additionally the

Table 10: Summary of Custom Apps

App Actual Permission Permissions in Implicit Intent
Uses Android Manifest Targets

1: DirectApp CAMERA, INTERNET CAMERA, VIBRATE
2: IndirectApp CAMERA 1: DirectApp
3: DirectAndIndirectApp CAMERA, INTERNET CAMERA 1: DirectApp

4: MaliciousApp VIBRATE VIBRATE
2: IndirectApp
3: DirectAndIndirectApp

Graph pictured in Figure 43 depicts the communication between these Apps. The nodes stand
for the Apps and the purple, dotted arrows symbolize the implicit Intents.

85

6.1 Intra- and Inter-App Permission Usage Analysis 6 EVALUATION

1: DirectApp

2: IndirectApp

4: MaliciousApp

3: IndirectAndDirectApp

Figure 43: Communication graph

Table 11: Setup summary
Permission-Group Setup
assigned 1A 1B 2A 2B 3 4 5A 5B 6
REQUIRED (direct) X X X
REQUIRED (indirect) X X
REQUIRED (direct & indirect) X X
MAYBE_REQUIRED X X X X
UNUSED X X
MISSING (direct) X X X
MISSING (indirect) X X X
MISSING (direct & indirect) X
MAYBE_MISSING X X X X

6.1.2 Custom Apps: Evaluation

Based on the previously described Apps, different setups will be evaluated now. The goal is
to check if all Permission-Groups are assigned correctly. Table 11 lists all available PGs and
shows in which setup a specific PG is assigned. Another goal is to point out the higher precision
of the Inter-App Permission Usage Analysis compared to the Intra-App Permission Usage
Analysis. In all setups the considered detail level is APP. Furthermore all result screenshots
which show 4 maybe missing permissions should show all unmentioned permissions as maybe
missing but in order to keep it clear the screenshots are cut.

Figure 44: Result Setup 1A

Setup 1A The first setup consists of an Intra-App Permission
Usage Analysis that analyzes the DirectApp App. The ex-
pected result should contain the following permissions: permis-
sion.android.CAMERA, permission.android.VIBRATE, permis-
sion.android.INTERNET. The permission.android.CAMERA
permission should belong to the REQUIRED PG, because it is

86

6 EVALUATION 6.1 Intra- and Inter-App Permission Usage Analysis

assigned in the manifest and there exists an use of this permission in the App’s source code.
Permission permission.android.VIBRATE should be assigned to the UNUSED PG since there
exists no use of this permission in the source code while it is still assigned in the manifest. Last
but not least permission permission.android.INTERNET should be assigned to the MISSING
PG, because there exists a use but it is not marked as being used in the manifest.
Figure 44 shows the result generated by PAndA2 for this setup. Clearly it fits to the expected
result.

Setup 1B is almost equal to Setup 1A but instead of an Intra-App Permission Usage Analysis
a Inter-App Permission Usage Analysis is considered. The result generated by PAndA2 is
shown in Figure 45. It matches the expected result.

Figure 45: Result Setup 1B

Figure 46: Result Setup 2A

Setup 2A The next setup consists of an
Intra-App Permission Usage Analysis again
that analyzes the IndirectApp App this time.
The expected result should contain the per-
mission.android.CAMERA permission in the
MAYBE_REQUIRED PG, because the per-
mission is marked as being used in the man-
ifest but there only exists an implicit Intent
and no statement which directly uses the per-
mission. Because of the same reason, but with the difference that the following permissions are
not mentioned in the manifest, the permission.android.INTERNET permission along with all
other permissions should be assigned to the MAYBE_MISSING PG. In Figure 46 the generated
result is pictured. It is identical with the expected result.

Figure 47: Result Setup 2B

Setup 2B is very similar to Setup 2A but
this time the Inter-App case is considered.
The result should be and is the same as before
(see Figure 47).

87

6.1 Intra- and Inter-App Permission Usage Analysis 6 EVALUATION

Setup 3 The third setup is the first setup that involves more than one application. It is an
Inter-App Permission Usage Analysis that analyzes the IndirectApp App. But along with this
App the DirectApp App is provided as non-native, optional input. In contrast to Setup 2B the
target of the implicit Intent defined in the analyzed App can be determined now. Thereby the
expected result should contain the permission.android.CAMERA permission in the REQUIRED
(indirect) PG and the permission.android.INTERNET permission in the MISSING (indirect) PG.
All other permissions will remain in the MAYBE_MISSING PG. The results fits the expected
result (see Figure 48).

Figure 48: Result Setup 3

Figure 49: Result Setup 4

Setup 4 Setup 4 again is very sim-
ilar to Setup 3. The only thing
that changed is the analyzed App.
Instead of analyzing the Indirec-
tApp App, in this setup the Di-
rectAndIndirectApp App will be an-
alyzed. The result will slightly change
through this modification. The per-
mission.android.CAMERA permission
will now be assigned to the RE-

QUIRED (direct and indirect) PG and the permission.android.INTERNET permission to the
MISSING (direct and indirect) PG. The visualized result in Figure 49 reveals that the result is
equal to the expected one.

Figure 50: Result Setup 5A

Setup 5A This setup again consists of an
Inter-App Permission Usage Analysis but for
the first time the mode will make a differ-
ence in the result. For this setup the cho-
sen mode is APP. The Apps which are taken
into account are, the IndirectApp App as an-
alyzed App and the MaliciousApp App as
non-native App. The expected result is equal

88

6 EVALUATION 6.1 Intra- and Inter-App Permission Usage Analysis

to the expected and actual results of Setup 2A and 2B. Figure 50 shows the result which matches
the expected one.

Figure 51: Result Setup 5B

Setup 5B This setup is almost equal to the
previous one but this time the mode is set to
ALL. The difference that should come out
in the result is that the permission permis-
sion.android.VIBRATE should be assigned
to the MISSING (indirect) PG now. The
reason is that the connection from the Ma-
liciousApp App to the IndirectApp App is
only considered in this mode. The actual
result matches the expected one (see Figure 51).

Figure 52: Result Setup 6

Setup 6 The last Setup, which is go-
ing to be considered, is again an Inter-
App Permission Usage Analysis in ALL
mode. This time three Apps will be con-
sidered: DirectApp, IndirectApp and Ma-
liciousApp. The analysis will be run three
times. Each time another App is setup
as the analyzed App and the others are
used as non-native Apps. The evaluated,
expected result will show that the permis-
sions permission.android.CAMERA, per-
mission.android.INTERNET and permis-
sion.android.VIBRATE are spread across
all three Apps. The Figure 52 shows the

associated actual results. Clearly they fit to the expected results.

Its left to say that all the actual results match the expected ones. Both analyses are working
as expected.

6.1.3 Real-World Apps: Evaluation

All these previously described and evaluated setups are used in order to check if PAndA2 is
working as expected. In the following it will be evaluated if the results acquired with the Intra-
and Inter-App Permission Usage Analysis are accurate. To do so the real-world Apps described
at the beginning of this chapter are used. In the following the trustworthiness of these Apps is
evaluated.

89

6.1 Intra- and Inter-App Permission Usage Analysis 6 EVALUATION

Table 12: Summary of Real-World Apps Results

App REQUI- MAYBE_ UN- MAYBE_ MIS- MISSING R1 R2 R3
RED REQUIRED USED MISSING SING edited

ADAC Pannenhilfe 3 5 0 165 2 0 0,05 0,60 1,00
Adobe Acrobat Reader 2 2 0 170 1 0 0,02 0,67 1,00
Barcode Scanner 6 3 0 162 4 2 0,05 0,60 0,75
ES File Explorer 10 9 0 151 5 3 0,11 0,67 0,77
Google Photos 15 5 0 143 12 6 0,11 0,56 0,71
Instagram 9 3 0 155 8 3 0,07 0,53 0,75
Tiny Flashlight 4 3 0 162 6 5 0,04 0,40 0,44
WhatsApp Messenger 25 7 0 140 3 1 0,18 0,89 0,96

Intra-App Permission Usage Analysis At first an Intra-App Permission Usage Analysis
will be executed per real-world App. The results of all these analyses can be found in Table 12.
The first column refers to the App analyzed. The next five columns stand for the number of
permissions in the associated PGs. The sixth column with the title "MISSING edited" refers to
the number of permissions in the MISSING PG without all permissions whose protection level
is normal.

"Normal" permissions should imply minor risk and serve only as a "heads-up" for
the user that the application is requesting access to such functionality.[11]

The next three columns show different trustworthiness-rankings:

• R1 simply shows the ratio of missing and maybe missing permissions to all permissions.

R1 = 1− |MISSING|+|MAY BE_MISSING|
|ALL_PERMISSIONS|

• R2 is equivalent to R1 but it ignores the maybe required and maybe missing permissions.

R2 = 1− |MISSING|
|REQUIRED|+|UNUSED|+|MISSING|

• R3 is equivalent to R2 but ignores missing normal permissions as well.

R3 = 1− |MISSING edited|
|REQUIRED|+|UNUSED|+|MISSING edited|]

By these rankings we can assume how trustworthy an App is. A value of 1 stands for trustworthy
while a value of 0 stands for not trustworthy at all. All three of these rankings show that the
majority of Apps is not 100% trustworthy. Only the ADAC Pannenhilfe and the Adobe Acrobat
Reader App could achieve a value of 1.00 at ranking R3. Nevertheless the WhatsApp Messenger
App seems to be almost fully trustworthy according to the numbers of the rankings R2 and R3.
Also in ranking R1 the WhatsApp Messenger App could reach the highest trustworthiness value.
Regardless of all these numbers all of the evaluated Apps are missing at least one permission
and by that none of them can be trusted blindly. The user still has to decide by himself if he
trusts the App or waits until a new version of the App is released that might fix the issues.
Anyway PAndA2 could successfully provide sufficient information to support that decision.

90

6 EVALUATION 6.1 Intra- and Inter-App Permission Usage Analysis

Table 13: Execution times (seconds)
App FlowDroid Amandroid PAndA2 *
ADAC Pannenhilfe 7 112 13
Adobe Acrobat Reader 197 31
Barcode Scanner 14 23 17
Google Photos 1062 138
Instagram 4246 83
Tiny Flashlight 1328 28
WhatsApp Messenger 12330
* Execution time of PAndA2 executing an Intra-App Permission Usage Analysis.

Inter-App Permission Usage Analysis The last case that is going to be evaluated in this
section consist of an Inter-App Permission Usage Analysis (ALL mode) of all described
real-world Apps. The selected analyzed App is the WhatsApp Messenger App. All other
Apps are used as non-native Apps. They represent the App environment on an arbitrary An-
droid device. The result of this analysis can be viewed in Figure 53 It shows that the App
is accessing some permissions in a direct and indirect way. It looks as if the Inter-App Per-
mission Usage Analysis could not provide a result with a higher accuracy this time. But with
more detailed background knowledge some users might know that the missing permission
com.google.android.c2dm.permission.SEND for example is only used together with an implicit
Intent. And by this analysis result we can tell that there exists no App in the current environment
that can be targeted by this Intent. Hence this result can be considered as being more precise.

After evaluating the expected functionality and the higher precision this evaluation section
will be concluded with some remarks regarding the performance of the Permission Usage
Analyses. Since we could not obtain or find another tool that is performing at least a similar
analysis we could not compare the execution time of our analyses. But still we can prove on
numbers that these analyses are quiet fast compared to other state-of-the-art information flow
analyses. The Table 13 shows the execution times of our Intra-App Permission Usage Analysis
compared to the execution times of the competing tools FlowDroid and Amandroid which will
be described in more detail in the next chapter (see 6.2). On average the Intra-App Permission
Usage Analysis is∼ 22 times faster then Amandroid. Of course the reason is the lower accuracy
of this analysis but in many usecases a Permission Usage Analysis can be sufficient. Because
of some special properties of FlowDroid, FlowDroid can even be faster. But on the other hand
most of the analyses executed with FlowDroid did not finish at all and threw an exception. In
case of the WhatsApp Messenger App PAndA2 was the only tool that finished at all.
All in all the Permission Usage Analyses can be a reliable and fast alternative to the mostly
slower and more complex information flow analyses.

91

6.1 Intra- and Inter-App Permission Usage Analysis 6 EVALUATION

Figure 53: Result WhatsApp Messenger

92

6 EVALUATION 6.2 Intra-App Information Flow Analysis

6.2 Intra-App Information Flow Analysis

In this section we want to evaluate the performance of our Intra-App Information Flow Analysis
regarding the ability of detecting information flows. Therefore, we compare our analysis with
the tools FlowDroid And Amandroid which perform the same kind of analysis.

Although all three tools have the same goal, they take different approaches. Therefore, we
had to clear some hurdles in order to be able to compare the three tools. Since Amandroid
and FlowDroid do not support different detail levels as we do, we only used our detail level
RES_TO_RES.

Another major problem is that all tools use different definitions of sources and sinks. This
definition is important since information flows are only computed from a source to a sink. For
example, if a tool does not consider a statement as a source by definition, it will not show an
information flow in the result even if there exists a flow from that statement. If another tool
does consider the mentioned statement as a source then it will be able to detect the information
flow. To get an idea of whether those differences in definitions cause the change in performance
of information flow detection or not, we will additionally evaluate the detection of sources and
sinks for the different tools.

Along with the previous problem comes the fact that our tool considers permissions as
sources and sinks and not protected statements themselves. For statements which are protected
by more than one permission this means that there are more than one sources resp. sinks found
in our tool whereas the other tools consider such a statement as one sink independently of the
number of permissions it is protected by.

In addition, a property of FlowDroid is to perform the analysis on each source file indepen-
dently. Therefore, information flows that we consider as a single path are split up in the result
of FlowDroid. For the evaluation, we will count those split paths as one for not disadvantaging
FlowDroid in our evaluation.

Before we start with the evaluation of the detection performance regarding information flow,
we first define some naming conventions to be able to specify our evaluation measures. We
call an information flow that was detected by the tools a positive. If an information flow was
detected correctly, we call this a true positive. Otherwise, if a non-existent information flow
was detected mistakenly, we call this a false positive. The last case is that a existent information
flow was not detected by the tools. We call this then a false negative.

Built on that, we can describe the evaluation measures for the tools. We use the measures
precision, recall and F-measure which are common for evaluating detection-related experiments.
The definitions of these measures are given below:

Precision The precision describes the efficiency of detection. It is defined as the ratio of the
number of true positives TP to the number of all positives which is the sum of occurrences of
true positives TP and false positives FP: precision = T P

T P+FP

93

6.2 Intra-App Information Flow Analysis 6 EVALUATION

Recall The recall describes the sensitivity of detection. It is defined as the ratio of the number
of true positives TP to the number of all existent information flows which is the sum of
occurrences of true positives TP and false negatives FN: recall = T P

T P+FN

F-measure The F-measure combines precision and recall with the harmonic mean: f =
2 · precision·recall

precision+recall

In the following, we evaluate the three tools FlowDroid, Amandroid and PAndA2 regarding
their ability of detecting information flows. We do this first on a set of custom Apps that we
have created for this evaluation in Section 6.2.1. Afterwards we perform the evaluation on a set
of Apps provided by the DroidBench benchmark in Section 6.2.2 and last on a set of real-world
Apps in Section 6.2.3.

6.2.1 Custom Apps

For evaluation we created a small set of Apps. We defined four test cases which we wanted
to test the tools with. For each test case we created a single App. The first two Apps contain
information flow only within a single Android component. Most of the sources and sinks are
not accessed directly by the Android component but are wrapped by normal Java classes. The
other two Apps cover inter-component communication. In one case the sensitive information
flows via intent to another component. In the other case the sensitive information is looped
through a second component and flows back to the sender component. All Apps are described
in detail below.

App 1: ClassToClass The application TestCase3 has one Android Activity class and
two regular Java classes. First Java class has a statement protected by the permission an-
droid.permission.READ_PHONE_STATE. This will be the source. In the second Java class,
we have a statement protected by two permissions android.permission.SEND_SMS and an-
droid.permission.WRITE_SMS. This will be the sink. The Android Activity class instantiates
both of the Java classes, obtains sensitive data from the source in the first Java class and passes
it to the sink in the second Java class. There is one actual information flow path in this app.

App 2: ComponentAndClassToClass This App has a source statement in one normal Java
class. The source is protected by permission android.permission.READ_PHONE_STATE.
We have two sink statements, one in a Java class and another in a Android Activity class.
Each sink statement is protected by the two permissions android.permission.SEND_SMS and
android.permission.WRITE_SMS. The Activity instantiates both Java classes, obtains sensitive
data from source in the first Java class and passes the data to one sink in the second Java class
and another sink within the Activity. Now there are two distinct information flow paths in this
Android application.

App 3: ExplicitIntentApp App 3 has two Activity classes. One normal Java class has a source
statement, protected by the permission android.permission.READ_PHONE_STATE. Another
Java class has a sink statement protected by the permissions android.permission.SEND_SMS

94

6 EVALUATION 6.2 Intra-App Information Flow Analysis

Tool TP FP FN Precision Recall F-measure
PAndA2 5 1 0 0.83 1 0.9
Amandroid 1 0 4 1 0.2 0.3
FlowDroid 5 2 0 0.71 1 0.83

Table 14: Precision, Recall and F-measure for the found paths in custom Apps

Tool TP FP FN Precision Recall F-measure
PAndA2 4 0 0 1 1 1
Amandroid 1 3 3 0.25 0.25 0.25
FlowDroid 4 20 0 0.17 1 0.28

Table 15: Precision, Recall and F-measure for the found sources in custom Apps

and android.permission.WRITE_SMS. The first Activity instantiates the Java class that contains
the source statement and obtains sensitive data from the source. The data is added to an explicit
intent and the second Activity is started. The second Activity instantiates the Java class with
the sink and passes the data to the sink. Here we have one information flow path from a
source protected by a permission to a sink through explicit intent between two Android Activity
classes.

App 4: IntentResultApp This application has two Android Activity classes. The first Activity
class has a source statement protected by the permission android.permission.READ_PHONE_-
STATE. The Activity class instantiates a Java class containing a source and sensitive data from
the source is obtained. The data is then added to an intent and the second Activity is started for
result. On receiving the intent, the second Activity sends the received data back to the sender.
Within the onActivityResult() method in the first Activity, we have a sink statement
protected by the permissions android.permission.SEND_SMS and android.permission.WRITE_-
SMS. We have one information flow path from source in the first Activity to the second Activity
and then back to the first Activity through explicit intents.

For performing the evaluation, we applied the adaptions to the actual results that we de-
scribed in Section 6.2. Afterwards we calculated Precision, Recall and F-measure independently
for found paths, sources and sinks. The results are shown in Table 6.2.1 for paths, in Table 6.2.1
for sources and in Table 6.2.1 for sinks.

The worst performance was achieved by Amandroid. For paths it reached only a Recall
of 0.2. This is caused by the different definition of sinks and sources, because many many
of the defined sources in the Apps were not found by Amandroid. PAndA2 and FlowDroid
performed much better. Both reached an F-measure of over 0.8 in detecting information
flows. Here PAndA2 performed slightly better. Where FlowDroid performed really worse is in
detecting sources. It often finds way too many sources, which lowers the Precision remarkably.
Unfortunately we did not find a reason for this behavior of FlowDroid.

95

6.2 Intra-App Information Flow Analysis 6 EVALUATION

Tool TP FP FN Precision Recall F-measure
PAndA2 5 1 0 0.83 1 0.9
Amandroid 1 1 4 0.5 0.2 0.28
FlowDroid 5 3 0 0.63 1 0.77

Table 16: Precision, Recall and F-measure for the found sinks in custom Apps

All in all, the evaluation on the custom Apps went well for our tool and for FlowDroid.
However, the amount of four Apps is not representative. As the next step, we evaluate the tools
on a larger amount of Apps that are provided by the DroidBench benchmark.

6.2.2 DroidBench

In addition to evaluating our tool with a set of custom Apps we used the benchmark DroidBench
as already described in Section 6. DroidBench is a collection of applications that describe test
cases especially for tools that track information flow through Android applications. The source
code as well as a short description for every application is available so we were able to check
for every App which should be the result of the analysis. DroidBench 2.0 contains 120 test
Apps of which we selected nearly fifty. Since many of the 120 applications describe special
cases that we decided not to handle in our analysis (see the Target Level Agreement) it was
not reasonable to use the complete benchmark. One example of such not handled features is
Inter-App communication.

As already mentioned we executed the test cases with our PAndA2 tool as well as with
Amandroid and FlowDroid. For each test case we collected the expected result and the outputs
of the three tools. For the Intra-App Information Flow Analysis we measured, as for the
own apps, the expected result in terms of number of sources, number of sinks and number of
available paths from source to sink. Furthermore, we listed the execution time of the different
tools for each App.

The next step then was to compare the expected and actual results. There we had to clear
some hurdles in order to be able to compare the three tools. These were the problem concerning
the definition of sources and sinks as well as dealing correctly with the split paths generated by
FlowDroid. Mainly these were already described in Section 6.2. But besides there was another
problem which occurred in particular when executing the DroidBench applications. Many of
the DroidBench test cases use a logging statement as sink. Since our definition of sources
and sinks did not consider logging as a sink, we had do adapt the Intra-App Information Flow
Analysis such that it also takes logging into account. This was necessary because more than half
of the test cases used logging as a sink and therefore adapting our tool to get a comparable result
was more reasonable than selecting the test applications according to their sink statements.

After having done the just described adjustments we were able to compare the results of
PAndA2 with FlowDroid and Amandroid. The used metrics are precision and recall as well as

96

6 EVALUATION 6.2 Intra-App Information Flow Analysis

Tool TP FP FN Precision Recall F-Measure
PAndA2 8 2 41 0,8 0,16 0,27
Amandroid 15 2 34 0,88 0,31 0,45
FlowDroid 39 9 10 0,81 0,8 0,8

Table 17: Precision, Recall and F-measure for the found paths

the F-measure.

In case of the Intra-App Information Flow Analysis precision describes how well a tool
behaves in terms of how many of the found paths are real paths in the application. To compute
this measure the true positives and false positives are taken into account. Table 6.2.2 shows
the number of true positives (TP), false positives (FP) as well as the value of precision for the
three tools. This value is quite high for all three of them which shows that PAndA2 is able
to keep up with the other tools regarding the question whether a found path is a real path in
the application. Moreover, the two false positives listed in the table result from special cases
where special information from the manifest has to be taken into account to realize that e.g. an
activity is inactive and therefore no information is flowing through it.

Recall describes for the Intra-App Information Flow Analysis how many of the possible
paths are found with the tool. This metric takes the true positives as well as the false negatives
into account. Here the value computed for the results of the DroidBench applications is quite
low. The main reason for this is the fact that DroidBench describes almost in every of the
used applications special cases of information flow through an application. Many of these
are excluded in the current version of the Intra-App Information Flow Analysis but could be
integrated as future work (see Section 8).

The weighted harmonic mean, which is described through the F-measure, is a combination
of the two metrics precision and recall and since the recall of PAndA2 is quite low (as just
described) it is justifiable that the F-measure is lower that those of the other tools as well.

The Tables 6.2.2 and 6.2.2 show the just described metrics for the number of found sources
and found sinks. Here PAndA2 is the only tool which in both cases has a precision of 1 which
means that there is no false positive in the sources resp. sinks found. Moreover, for the found
sources and sinks PAndA2 even has the best F-measure of all three tools.

Finally, it can be said that the computation of sources and sinks works already very good
whereas the computation of paths between these sources and sinks still could be refined.

In summary it can be said, that even though PAndA2 has not the best results concerning
recall and the F-measure in case of found paths this can be mainly traced back to the fact that
DroidBench often deals with quite rare artificial cases. Much more important that handling
all these special cases is a good behavior on real-world Apps. How the Intra-App Information
Flow Analysis of PAndA2 behaves in such cases follows now.

97

6.2 Intra-App Information Flow Analysis 6 EVALUATION

Tool TP FP FN Precision Recall F-Measure
PAndA2 36 0 16 1 0,69 0,82
Amandroid 24 0 28 1 0,46 0,63
FlowDroid 49 108 3 0,31 0,94 0,47

Table 18: Precision, Recall and F-measure for the found sources

Tool TP FP FN Precision Recall F-Measure
PAndA2 69 0 3 1 0,96 0,98
Amandroid 47 33 25 0,59 0,65 0,62
FlowDroid 69 16 3 0,81 0,96 0,88

Table 19: Precision, Recall and F-measure for the found sinks

6.2.3 Real-World Apps

Besides the custom Apps and the benchmark DroidBench we executed PAndA2 with a set of
real-world Apps as mentioned in Section 6. Since the source code of these applications is not
known to us, the goal for the evaluation of executing the Intra-App Information Flow Analysis
with these Apps was not to check for a correct result. Moreover, we wanted to prove that,
besides finding information flow in constructed examples, this analysis can deal with real-world
applications. Here again we compared the behavior of our analysis with the behavior of the
tools FlowDroid and Amandroid.

The result which is visualized in Table 6.2.3 was quite surprising. The dashes express that
the analysis could not be executed due to an exception. FlowDroid, which was quite good
in finding many different cases of information flow (see previous section) managed only to
execute a complete analysis on two of the eight examples. These were the ADAC Pannenhilfe
and the Barcode Scanner.

Amandroid was better concerning the number of applications for which the analysis suc-
ceeded. This tool could analyze four out of eight applications. But the best of the three tools
was PAndA2 with six out of eight Apps. Another noticeable fact is that the number of sources
and sinks found by the tools differs so much. There is no result where this number is equal for
all tools. A reason for this behavior is that the definition of sources and sinks is different in the
tools. When looking for example at the application Instagram the number of sinks found in
PAndA2 and Amandroid is extremely divergent. But here the 156 sinks found in Amandroid
reflect statements where information is added to an intent. In contrast to that, PAndA2 does
not consider such statements as sinks (they might be part of a possible information flow path
but not a sink) but concentrates on statements protected by permissions. Therefore, it is not
surprising that the results considering sources and sinks but also considering paths differ that
much.

98

6 EVALUATION 6.2 Intra-App Information Flow Analysis

PAndA2 FlowDroid Amandroid
App Sources Sinks Paths Sources Sinks Paths Sources Sinks Paths
ADAC 1 0 0 84 29 10 0 2 0
Adobe 1 1 0 - - - - - -
Barcode 2 2 0 0 0 0 0 0 0
ES File Ex-
plorer

- - - - - - - - -

Google
Photos

8 7 0 - - - - - -

Instagram 8 2 0 - - - 1 156 0
Flashlight 4 1 0 - - - 6 3 0
Whatsapp - - - - - - - - -

Table 20: Evaluation Results for Real-World Apps

Table 21: Execution times (seconds)
App FlowDroid Amandroid PAndA2 *
ADAC Pannenhilfe 7 112 18
Adobe Acrobat Reader 197 68
Barcode Scanner 14 23 26
Google Photos 1062 1238
Instagram 4246 537
Tiny Flashlight 1328 76
* Execution time of PAndA2 executing an Intra-App Information Flow Analysis.

99

6.3 Feature Comparison 6 EVALUATION

The execution times of the three tools are shown in Table 21. Since FlowDroid successfully
executed the analysis only for two of the Apps, the comparison with this tool is not very
expressive but what can be seen in the table is that the execution times of PAndA2 can keep
pace with those of the other tools. There are some applications where the others are faster
(Barcode Scanner, Google Photos) but there are also some where PAndA2 is faster (Adobe
Acrobat Reader, Instagram, Tiny Flashlight) than the others.

6.3 Feature Comparison

Besides the difference and similarity in analysis when comparing the PAndA2 tool to the
FlowDroid or Amandroid tool, there are also more advanced features in the PAndA2 tool. In
this section we will describe the extra features of analysis modes and user interfaces.

Regarding the analysis modes, the PAndA2 tool can analyze a single Android application to
extract the desired information accordingly to the type of the analysis. This feature is same
as in the FlowDroid or Amandroid. However, the PAndA2 tool also supports an aggregation
analysis which allows users analyze an Android application within an existing environment. The
environment is indeed created by many other Android applications which may or not influence
the analyzed application. This type of analysis is performed by the Inter-App Permission Usage
Analysis in the PAndA2 tool. In addition, users can find more information about the difference
between two versions of the same application by using the COMPARISON mode. It means that
the tool is able to analyze multiple Apps and then if needed, they can compared with previous
results to obtain the similar or the different information.

With respect to the user interfaces, one of the concerns in the PAndA2 tool is the ease of use.
The PAndA2 tool was designed not only for extensibility and maintainability but also the ease
of use. Similar to the both tools - FlowDroid and Amandroid - the PAndA2 tool is built into a
JAR file to allow users running analysis by command line. In general, users can only get textual
results through the command line interface. However, the PAndA2 tool is more advanced than
the others because it supports GUI. The GUI lets users perform exactly same analysis as in
command line interface, but the result representation is more readable and understandable. In
particular, the GUI can represent results in textual and graphical mode. This can help users
to easily get the information of results in textual mode or have a clear view about them in
graphical one. Furthermore, all interactions such as selecting operations, filtering results etc.
from users to the PAndA2 tool become more comfortable when comparing the GUI with the
command line interface.

Last but not least, the results obtained in PAndA2 , can be reused whenever required.
Currently in the FlowDroid or Amandroid tool, users can only view the result of each analysis
once. If they want to view the result again, they have to rerun the analysis. In contrast, the
PAndA2 tool allows users saving results into files. Therefore users can review it anytime they
want without performing analysis again. In addition, the saved result is not only for reviewing,

100

7 FUTURE WORK

but it can also be used as inputs for COMPARISON mode in the PAndA2 tool. This increases
the performance of the PAndA2 tool since it does not need to run the analysis again.

In summary, with the advanced features for both analysis modes and user interfaces, the
PAndA2 tool tries to show precisely and correctly more information in a common way of
command line and in the most efficient way of GUI to the users.

7 Future Work

In Section 3 we described the as-is state of our PAndA2 tool and in Section 4 of the PAndA2

framework. Both have been developed to the best of our knowledge and belief. However,
we could not realize a fully comprehensive piece of software due to time constraints. In the
following, we describe three enhancements that we would like to apply to our work in the
future.

7.1 Improving Existing Analyses

The evaluation in Section 6 for the Intra-App and the Inter-App Permission Usage Analysis
already led to a positive outcome. Nevertheless, we know that we did not cover some special
cases related to the permission usage. For example it is possible to grant temporary access
to resources without the need of permissions at run-time instead of defining the grants in the
manifest file. For now, we cannot detect this case among some other run-time related cases
and, hence, our analysis might show a wrong result. To include these special cases we need to
adapt the core service StatementAnalyzer and the Enhancer. However, the realization
would cost huge effort and the improvement of the analysis performance would only be minor.

In contrast to the Permission Usage Analyses, the evaluation of the Intra-App Information
Flow Analysis has revealed some issues compared to the tools FlowDroid and Amandroid.
To be precise, the performance of our tool was significantly worse than the other tools on the
DoidBench Apps. This is majorly caused by the lack of covering information flow through
global variables. Implementing this feature would only mean a small change to the Program
Dependence Graph (PDG). Therefore, we are confident that this improvement can be realized
in a small amount of time. Other useful but more heavy improvements are the support of object
sensitivity and a partial support of concurrence sensitivity. Since our analysis is based on a
PDG, we can profit from existing work. Object sensitivity in PDGs was already described in
detail by Hammer in [4]. His work on this topic can be implemented one to one as an extension
of the PDG and backward slicing algorithm. To support concurrence sensitivity, we can use the
work of Krinke [8] as a basis. He describes concurrence sensitivity for general Java programs.
The Android execution model is much more complex than the execution of a general concurrent
Java program. Hence, the work by Krinke might has to be adapted to the Android environment
and it might not be possible to cover all cases of concurrency. When all improvements are

101

7.2 Extending the Set of Analyses 7 FUTURE WORK

implemented, we are confident that our tool can keep up with the performance of FlowDroid
and Amandroid.

7.2 Extending the Set of Analyses

Within our PAndA2 tool, we provide the Inter-App Permission Usage Analysis that we described
in Section 3.5. A useful extension of our tool would be to provide also an Inter-App Information
Flow Analysis that is based on the existing Intra-App Information Flow Analysis. Due to the
architecture of our framework the new analysis can be realized with small effort since we can
reuse the results of the Intra-App Information Flow Analysis.

With the new analysis we would be able to detect information flow through multiple Android
Apps. For illustration we can distribute the information flow in our example App SimToSms
over two Apps. We call the resulting Apps SimToIntent and IntentToSms. The App SimToIntent
transfers the sim serial number via an implicit intent to the IntentToSms App which sends the
received information via SMS. Obviously, it is not possible to detect the described information
flow between resources with an Intra-App analysis. Hence, the new Inter-App Information
Flow Analysis would enrich the features of the PAndA2 tool remarkably.

7.3 Improving the Framework

In our Architecture Document, we defined a list of AnalysisProcedures as a model for
an Android App Analysis. This list will be processed by the AnalysisRunner to perform
the analysis. Such a list is sufficient for our kind of analyses. But regarding the framework
which should be able to run arbitrary analyses, using a simple list is restrictive. Therefore, it is
appropriate to use a more flexible data structure.

Our idea is to use a dependence graph containing the sub-analyses. A dependence graph is a
directed acyclic graph with a single root node which is the aggregation analysis that creates the
final result. All other nodes in the dependence graph are preceding sub-analyses that provide
their results indirectly or directly to the final aggregation analyses. The leaf nodes of the graph
will be initial analyses that process the .apk files to be analyzed.

A1

A2

A4 A5

A3

A6

Figure 54: Dependence graph with six Analy-
sisProcedures A1, . . . , A6 repre-
senting an Android App Analysis

In Figure 54 we show an example of what
a dependence graph could look like. The
example consists of six AnalysisProce-
dures named A1, . . . , A6. The leaf nodes
A4, A5 and A6 on the lowest level perform
an initial analysis on one .apk file each.
The top AnalysisProcedure A1 is the
final aggregation analysis that will create the
concluding result. The nodes A2 and A3 are

102

8 CONCLUSION

Inter-App
Permission Usage

Analysis

Intra-App
Permission Usage

Analysis 1

Intra-App
Permission Usage

Analysis 2

Intra-App
Permission Usage

Analysis n
...

Figure 55: Dependence graph of a Inter-App Permission Usage Analysis

intermediate aggregation analysis that serve the final analysis step. All transitions in the
dependence graph point downwards and represent the “depends on” relation.

In case the dependence graph for analysis is realized, we would have to transform our
analyses from the list approach into such a graph. In Figure 55 we have visualized the
dependence graph of our Inter-App Permission Usage Analysis that we described in Section 3.5.
It has two levels: The lower layer consists of multiple Intra-App Permission Usage Analyses,
one for each App. The top layer is the aggregation analysis that combines the preceding
Intra-App Analyses into the final Inter-App Permission Usage Analysis.

After the dependence graph is implemented, we can additionally provide the option to
run the analyses of a level in the dependence graph in parallel. This can speed up analyses
significantly, especially for real-world Apps. Unfortunately, the parallelization leads to higher
memory consumption. During the evaluation of our tool in Section 6 we observed already
demanding memory consumption of analyses on single real-world Apps. Regarding this fact,
we would have to use machines equipped with a high amount of memory to profit from the
concurrent execution. Furthermore, the Soot framework, which our tool is based on, does not
allow the decompilation of .apk files in parallel. Hence, we would need to find a workaround
for this or we have to restrict the access to Soot within the PAndA2 framework to be serial only.
The second approach would reduce the parallel performance of our framework.

8 Conclusion

The previous sections described PAndA2 and in particular which algorithms and concepts are
implemented in the different components. The three analyses were described and possible ways
of extending the tool were introduced. Furthermore, the quality assurance process PAndA2

passed through was shown and the evaluation of the tool was described. Besides this we
suggested ideas how PAndA2 can be further extended and optimized.

103

8 CONCLUSION

In conclusion, we introduced a tool which is able to perform different analyses on Android
applications and even provided three analyses implemented by ourselves. The evaluation
showed that the Intra-App Information Flow Analysis has problems in finding certain constructs
that can forward information. But even though the range of handled cases is not complete
the analysis works on a good basis which can be extended by further features to handle more
concepts. Besides this, we provide the two Permission Usage Analyses which perform a type
of analysis which was not yet available in this form on the market. We saw that the Permission
Usage Analyses can detect possible information leaks in an App and even through different
Apps. In summary we saw that in some areas our tool has some weaknesses but there are other
areas where our tool performs better than others. Therefore, it can be said that our analyses can
keep up with other tools doing comparable analyses. Moreover, we provide with our Intra and
Inter-App Permission Usage Analysis additional new features.

Besides the three analyses PAndA2 provides the opportunity to use the framework and
especially the client and core services with other analyses that can be easily integrated into
PAndA2 . Concluding the document, it can be said that with PAndA2 we provide the possibility
to users (thanks to the graphical user interface even to inexperienced users) to find possible
information leaks in Android applications.

104

8 CONCLUSION

Appendix

1 p u b l i c c l a s s S i m R e a d e r A c t i v i t y ex tends A c t i v i t y {
2 p r i v a t e s t a t i c f i n a l i n t MY_REQEST_CODE = 1 ;
3 p u b l i c s t a t i c f i n a l S t r i n g SIM_DATA = "SIM_DATA" ;
4 S t r i n g se rv i ceNumber ;
5
6 @Override
7 p r o t e c t e d void o n C r e a t e (Bundle s a v e d I n s t a n c e S t a t e) {
8 TelephonyManager manager = (TelephonyManager)
9 g e t S y s t e m S e r v i c e (C o n t e x t . TELEPHONY_SERVICE) ;

10 S t r i n g s imSer i a lNumber = manager . ge tS imSer i a lNumber () ;
11
12 s imSer i a lNumber = s h o r t e n S i m (s imSer ia lNumber , 5) ;
13
14 I n t e n t e x p l i c i t I n t e n t = new I n t e n t (t h i s , S m s S e n d e r A c t i v i t y . c l a s s) ;
15 e x p l i c i t I n t e n t . p u t E x t r a (SIM_DATA, s imSer i a lNumber) ;
16 s t a r t A c t i v i t y F o r R e s u l t (e x p l i c i t I n t e n t , MY_REQEST_CODE) ;
17 }
18
19 @Override
20 p r o t e c t e d void o n A c t i v i t y R e s u l t (i n t reqCode , i n t r e s u l t C o d e ,
21 I n t e n t r e s u l t I n t e n t) {
22 i f (reqCode == MY_REQEST_CODE) {
23 i f (r e s u l t C o d e == A c t i v i t y . RESULT_OK) {
24 se rv i ceNumber = r e s u l t I n t e n t
25 . g e t S t r i n g E x t r a (S m s S e n d e r A c t i v i t y . SERVICE_NUMBER_DATA) ;
26
27 I n t e n t i m p l i c i t I n t e n t = new I n t e n t (" de . upb . pga3 . sendData ") ;
28 i m p l i c i t I n t e n t . p u t E x t r a (S m s S e n d e r A c t i v i t y . SERVICE_NUMBER_DATA,
29 se rv i ceNumber) ;
30 s t a r t A c t i v i t y (i m p l i c i t I n t e n t) ;
31 }
32 }
33 }
34
35 p r i v a t e S t r i n g s h o r t e n S i m (S t r i n g s imSer ia lNumber , i n t l e n g t h) {
36 i f (s imSer i a lNumber . l e n g t h () > l e n g t h) {
37 s imSer i a lNumber = s imSer i a lNumber . s u b s t r i n g (0 , 4) ;
38 }
39 re turn s imSer i a lNumber ;
40 }
41 }
42
43
44 p u b l i c c l a s s S m s S e n d e r A c t i v i t y ex tends A c t i v i t y {
45 p u b l i c s t a t i c f i n a l S t r i n g SERVICE_NUMBER_DATA = "RECEIVER_NUMBER" ;
46 p r i v a t e s t a t i c f i n a l S t r i n g SERVICE_NUMBER = " +49123456789 " ;
47
48 @Override

105

List of Figures List of Figures

49 p r o t e c t e d void o n C r e a t e (Bundle s a v e d I n s t a n c e S t a t e) {
50 I n t e n t r e c e i v e d I n t e n t = g e t I n t e n t () ;
51 S t r i n g s imSer i a lNumber = r e c e i v e d I n t e n t
52 . g e t S t r i n g E x t r a (S i m R e a d e r A c t i v i t y . SIM_DATA) ;
53 SmsManager . g e t D e f a u l t () . sendTextMessage (SERVICE_NUMBER, nul l ,
54 s imSer ia lNumber , nul l , n u l l) ;
55 I n t e n t r e s u l t I n t e n t = new I n t e n t () ;
56 r e s u l t I n t e n t . p u t E x t r a (SERVICE_NUMBER_DATA, SERVICE_NUMBER) ;
57 s e t R e s u l t (RESULT_OK, r e s u l t I n t e n t) ;
58 f i n i s h () ;
59 }
60 }

Listing 14: Source code of the SimToSms App

List of Figures

1 Architecture Overview . 2
2 Client Model . 4
3 Triggering User Interface . 5
4 Client Architecture . 6
5 GUI: Home . 8
6 Analysis Wizard: Page1 . 9
7 Analysis Wizard: Page2 . 10
8 GUI: Result . 10
9 GUI: Result2 . 11
10 GUI: Filter . 11
11 Client CommandLine Interface . 12
12 CLI Textual Result . 15
13 CLI Message Result . 16
14 EnhancedInput of the SimToSms App 29
15 Intra-App Permission Usage Analysis: Overview 30
16 Analysis basis for the SimToSms App . 31
17 Intra-App Permission Usage Analysis: Textual result 33
18 Intra-App Permission Usage Analysis: Graphical result 34
19 Analysis result for the SimToSms App (Intra-App Permission Usage) 35
20 Inter-App Permission Usage Analysis: Overview 36
21 Analysis basis for the SimToSms and PhoneNumberToInternet App 37
22 Inter-App Permission Usage Analysis: Textual result 40
23 Inter-App Permission Usage Analysis: Graphical result 40
24 Analysis result for the SimToSms App (Inter-App Permission Usage) 41
25 Workflow of the Intra-App Information Flow Analysis 42

106

References

26 Identifying Android call back methods from XML Layout file 46
27 Relations between Parameter Nodes . 51
28 Textual result representation for the App SimToSms in Method mode 58
29 Graphical result representation for the App SimToSms 59
30 Example of a textual result . 60
31 Example of a graphical result . 61
32 Code Coverage displayed in Coverage window 69
33 Color code displaying the coverage in Java source editor 70
34 Code Coverage tracking with time . 71
35 Code violations shown in Violation windows 72
36 Code violations shown in Java source editor 72
37 PMD Rule set XML file . 73
38 Duplicate Code displayed in Similar Code view 74
39 Exact lines no. for matching code in Compare editor 75
40 ATE WorkFlow . 77
41 ATE Folder Structure . 78
42 ATE Output . 81
43 Communication graph . 86
44 Result Setup 1A . 86
45 Result Setup 1B . 87
46 Result Setup 2A . 87
47 Result Setup 2B . 87
48 Result Setup 3 . 88
49 Result Setup 4 . 88
50 Result Setup 5A . 88
51 Result Setup 5B . 89
52 Result Setup 6 . 89
53 Result WhatsApp Messenger . 92
54 Dependence graph with six AnalysisProcedures A1, . . . , A6 representing

an Android App Analysis . 102
55 Dependence graph of a Inter-App Permission Usage Analysis 103

References

[1] Tom Copeland. Pmd 4.0. http://tomcopeland.blogs.com/
juniordeveloper/2007/07/pmd-40-released.html, July 2007, (ac-
cessed February 25, 2016). 71, 73

[2] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349, July 1987.
49

107

http://tomcopeland.blogs.com/juniordeveloper/2007/07/pmd-40-released.html
http://tomcopeland.blogs.com/juniordeveloper/2007/07/pmd-40-released.html

References References

[3] Inc Google. Codepro analytix evaluation guide. https://google-web-toolkit.
googlecode.com/files/CodePro-EvalGuide.pdf, 2006 - 2010, (accessed
February 25, 2016). 74

[4] Christian Hammer. Information Flow Control for Java - A Comprehensive Approach
based on Path Conditions in Dependence Graphs. PhD thesis, Universität Karlsruhe (TH),
Fak. f. Informatik, July 2009. ISBN 978-3-86644-398-3. 50, 52, 55, 56, 101

[5] Rick Hower. Software qa and testing resource center. http://www.
softwareqatest.com, 1996 - 2016, (accessed February 22, 2016). 63, 67, 71

[6] Zhen Huang Kathy Wain Yee Au, Yi Fan Zhou and David Lie. PScout:Analyzing the
Android Permission Specification. PhD thesis, University of Toronto, Department of
Electrical and Computer Engineering, October 2012. 20, 62

[7] Mountainminds GmbH & Co. KG and Contributors. Java code coverage for eclipse.
http://eclemma.org, 2006 - 2016, (accessed February 25, 2016). 69, 70

[8] Jens Krinke. Context-sensitive slicing of concurrent programs. SIGSOFT Softw. Eng.
Notes, 28(5):178–187, September 2003. 101

[9] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators in a
flowgraph. ACM Trans. Program. Lang. Syst., 1(1):121–141, January 1979. 49, 50

[10] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. Speeding up slicing.
SIGSOFT Softw. Eng. Notes, 19(5):11–20, December 1994. 52

[11] Asaf Shabtai, Yuval Fledel, Uri Kanonov, Yuval Elovici, and Shlomi Dolev. Google
android: A state-of-the-art review of security mechanisms. CoRR, abs/0912.5101, 2009.
90

[12] Eric Bodden Steven Arzt, Siegfried Rasthofer. Susi: A tool for the fully automated
classification and categorization of android sources and sinks. Technical Report TUD-
CS-2013-0114, Secure Software Engineering, Group European Center for Security and
Privacy by Design (EC SPRIDE), Technische University Darmstadt and Fraunhofer SIT
Darmstadt, Germany, May 2013. 20, 54

[13] TutorialsPoint. Junit tutorial. http://www.tutorialspoint.com/junit/
junit_test_framework.htm, (accessed February 22, 2016). 67

108

https://google-web-toolkit.googlecode.com/files/CodePro-EvalGuide.pdf
https://google-web-toolkit.googlecode.com/files/CodePro-EvalGuide.pdf
http://www.softwareqatest.com
http://www.softwareqatest.com
http://eclemma.org
http://www.tutorialspoint.com/junit/junit_test_framework.htm
http://www.tutorialspoint.com/junit/junit_test_framework.htm

	1 Introduction
	2 Architecture Overview
	3 Implementation Details
	3.1 Client
	3.1.1 Graphical User Interface (GUI)
	3.1.2 Command Line Interface
	3.1.3 Loading and Storing the Result

	3.2 CoreServices
	3.2.1 XMLParser
	3.2.2 The Interface DataStorage
	3.2.3 Statement Analyzer

	3.3 Enhancer
	3.3.1 EnhancedInput

	3.4 Intra-App Permission Usage Analysis
	3.4.1 Enhancer Support
	3.4.2 GraphGenerator: Analyze Explicit Intents
	3.4.3 Analyzer: Assign Permission-Groups
	3.4.4 Result Representation

	3.5 Inter-App Permission Usage Analysis
	3.5.1 Enhancer Support: Collect Previous Results
	3.5.2 GraphGenerator: Analyze Implicit Intents
	3.5.3 Analyzer: Assign Permission-Groups
	3.5.4 Result Representation

	3.6 Intra-App Information Flow Analysis
	3.6.1 Soot framework support
	3.6.2 GraphGenerator: Building the Program Dependence Graph
	3.6.3 Analyzer: Finding Information Flow Paths
	3.6.4 Result Representation

	4 Extensibility
	4.1 Adding a New Analysis
	4.2 Integrating a new User Interface
	4.3 Changing API

	5 Quality Assurance
	5.1 Types of Testing
	5.1.1 Black box / Functional Testing
	5.1.2 White box testing with Unit Testing

	5.2 Tools
	5.2.1 EclEmma
	5.2.2 PMD
	5.2.3 CodePro

	5.3 Automatic Test Executor
	5.3.1 Workflow of Automatic Test Executor (ATE)
	5.3.2 Structure of Test Cases:
	5.3.3 Result Output:

	6 Evaluation
	6.1 Intra- and Inter-App Permission Usage Analysis
	6.1.1 Custom Apps: Description
	6.1.2 Custom Apps: Evaluation
	6.1.3 Real-World Apps: Evaluation

	6.2 Intra-App Information Flow Analysis
	6.2.1 Custom Apps
	6.2.2 DroidBench
	6.2.3 Real-World Apps

	6.3 Feature Comparison

	7 Future Work
	7.1 Improving Existing Analyses
	7.2 Extending the Set of Analyses
	7.3 Improving the Framework

	8 Conclusion
	List of Figures
	References

