
Android App Analysis
University of Paderborn

Warburger Str. 100
33102 Paderborn

Software Architecture Document

Paderborn, July 31, 2015

Authors:

Abhinav Solanki Anand Devarajan
Arjya Shankar Mishra Fabian Witter
Felix Pauck Monika Wedel
Pham Thuy Sy Nguyen Ram Kumar Karuppusamy
Sriram Parthasarathi

Contents

1 Introduction 1

2 High-Level Architecture 1
2.1 General Workflow of the Tool . 2
2.2 Component Architecture . 7
2.3 Interaction between the Components . 11

2.3.1 Level 1 and 2a . 11
2.3.2 Level 2b . 18

3 Soot Framework 22
3.1 Soot’s Features . 23
3.2 Implementation Details . 25

3.2.1 Running Soot . 25
3.2.2 Creating Entry Point . 26
3.2.3 Adding own analysis to Soot . 27

4 Refined Architecture 28
4.1 Overall Framework . 29

4.1.1 Analysis . 29
4.1.2 Data Structures . 33
4.1.3 Core Services . 36
4.1.4 Enhancer . 39
4.1.5 Usage Protocols . 44
4.1.6 Software Design Patterns . 46

4.2 AnalysisProcedure for Level 1 . 47
4.2.1 AnalysisFactoryLvl1 . 47
4.2.2 GraphGeneratorLvl1 . 49
4.2.3 AnalyzerLvl1 . 52
4.2.4 AnalysisResultLvl1 . 57

4.3 AnalysisProcedure for Level 2a . 57
4.3.1 AnalysisFactoryLvl2a . 58
4.3.2 GraphGeneratorLvl2a . 59
4.3.3 AnalyzerLvl2a . 64
4.3.4 AnalysisResultLvl2a . 69

4.4 AnalysisProcedure for Level 2b . 70
4.4.1 AnalysisFactoryLvl2b . 71
4.4.2 A3AnalysisProcedure . 71
4.4.3 Enhancer . 71
4.4.4 GraphGeneratorLvl2b . 71
4.4.5 AnalyzerLvl2b . 73

Contents Contents

4.4.6 AnalysisResultLvl2b . 75
4.5 User Interface Structure . 75

4.5.1 Client . 78
4.5.2 ClientGUI . 81
4.5.3 ClientCommandLine . 83
4.5.4 UI StateChart Diagram . 84

5 User Interface 84
5.1 Sketches . 86
5.2 Workflow . 105
5.3 Command Line . 109

6 Projectplan 112
6.1 Development Phase (August 2015 - February 2016) 112
6.2 Delivery (March 2016) . 115

List of Figures 116

III

2 HIGH-LEVEL ARCHITECTURE

1 Introduction

In this document we are going to present the architecture of our Android App Analysis tool,
which we are going to develop in the next months. After giving an overview in Section 2.1 how
the workflow of the tool will look like we are introducing the overall structure by presenting the
different components the tool consists of (see Sec. 2.2). Furthermore, we describe in Section 2.3
how the introduced components interact for the analysis Level 1, 2a and 2b that are supported
by the tool.

Section 3 deals with the Soot framework that will be used in the tool. There the features the
tool uses are described in general as well as implementation details are mentioned. Afterwards,
in Section 4 we are refining the structure of the components by introducing class diagrams
for the important classes and describing their structure. This Section is partitioned into five
subsections starting with the overall framework in Section 4.1 and then continuing with the
level specific classes. The last subsection then deals with the structure of the client component
(see Sec. 4.5).

After explaining the detailed structure we present sketches and the workflow of our tool’s
user interface (see Sec. 5). In the end we present the time schedule for the remaining develop-
ment time in Section 6.

In this document we use a special formatting for classes, methods, attributes as
well as for components to clearly show that the words reflect concrete classes, methods, etc.

Since this document directly follows the Target Level Agreement in the time line of submitted
documents, we especially want to refer to some sections at this point, which answer questions
that were still open in the Target Level Agreement.
• The way of parsing the source code will be explained in Section 3 which deals with Soot.
• Distinction between having two different Apps or two versions of the same App will be

done by means of the XMLParser and the AppIdentifier which are described in
Section 4.1.3 and Section 4.5.
• The parts we will use Soot for can be found looking at Section 3 as well as Section 4.1.4

and Section 4.3.2.
• As interprocedural Information Flow Control (IFC) analysis for Level 2a we decided to

implement an IFC analysis using Program Dependence Graphs(PDG). Detail concerning
this analysis are described in Sec. 4.3.

2 High-Level Architecture

This section presents in subsection 2.1 the general workflow of the tool by showing in which
order which activities are executed. Afterwards, we introduce the components of the tool and
interfaces which connect them in subsection 2.2. Finally, the communication between the
components is presented in subsection 2.3.

1

2.1 General Workflow of the Tool 2 HIGH-LEVEL ARCHITECTURE

2.1 General Workflow of the Tool

The following section is a description on general workflow of our Android App Analysis tool
in the form of activity diagram. The activity diagram(see Figure 2) follows the basic step by
step action performed by our Android App Analysis tool.

The first and foremost step is ’How to start our Android App Analysis tool?’, since our
analysis tool can be started both in command prompt and through the User Interface(UI).
The user can choose one of the described possibilities based upon his/her convenience. After
starting the application the user has to select the Level(1, 2a and 2b) of analysis he/she want to
perform (see Figure 1). The analysis performed in each level differ between them, which will
be described in detailed bellow. Then the user must select any one of the mode(SUMMARY or
COMPARISON) and provide input(s) to perform the analysis. The input(s) should always be
an .apk file or a previous analysis result and the number of input varies for each level and the
mode the user selects.

In Level 1 and Level 2a SUMMARY mode the user should provide one .apk file as input,
but in Level 1 and Level 2a COMPARISON mode the first input will be one .apk and the
second input will be a previous analysis result.

The Level 1 is used to find out different groups of permissions(REQUIRED, MAYBE_-
REQUIRED, UNUSED, MISSING, MAYBE_MISSING) in App, Component, Method, and
Class of an application. If the user is performing the Level 1 SUMMARY, the input .apk is
passed to the XMLParser. The XMLParser unzips the .apk file and extracts the manifest
permissions in one end. In the other end, the same apk is passed into soot and generate a
jimple model, Simultaneously the tool gets the API’s information which will be stored in
DataStorage, the API’s defines the permissions of many versions of Android library. This
information is used to link the layers and map the permissions that are used. In the next step the
tool tracks the explicit intent that are used in the statement and links them to generate a graph.
Then as the final step of the analysis, the tool will compare the manifest permission which is
obtained previously with the generated graph and categorise the permissions into five different
group(REQUIRED, MAYBE_REQUIRED, UNUSED, MISSING, MAYBE_MISSING).

Level 2a is used to find out the data flow between use of the permissions, Level 2a SUM-
MARY mode performs the same steps as Level 1 (see Figure 3)until the tool builds a program
dependence graph by analyzing explicit intents and modelling control dependencies and data
flow. For this, an information flow control technique is used. By means of the graph and the
permissions declared in the manifest file, the tool finds the tool detects which statements are
sources and sinks and analyzes the program dependence graph to detect paths from sources to
sinks. Finally the result is generated for different detail levels (Control Flow, Statement Flow
and Resource to Resource).

When the user is performing the Level 1 and Level 2a COMPARISON mode, then the same
procedure similar to SUMMARY mode is followed for the first .apk input and a result is

2

2 HIGH-LEVEL ARCHITECTURE 2.1 General Workflow of the Tool

Figure 1: Activity Diagram for General Workflow

3

2.1 General Workflow of the Tool 2 HIGH-LEVEL ARCHITECTURE

Figure 2: Activity Diagram for Level 1 Analysis

4

2 HIGH-LEVEL ARCHITECTURE 2.1 General Workflow of the Tool

Figure 3: Activity Diagram for Level 2a Analysis

5

2.1 General Workflow of the Tool 2 HIGH-LEVEL ARCHITECTURE

Figure 4: Activity Diagram Level 2b Analysis

6

2 HIGH-LEVEL ARCHITECTURE 2.2 Component Architecture

generated and the previous result that was specified as input is compared with the just generated
result. Then the final compared result is generated.

Level 2b analysis is the extension of Level 1, so in addition Level 2b will compute the
resource used by an App via other Apps, which can be done by tracking implicit intent. During
Level 2b analysis the user has to select one more additional level specific mode (APP and ALL)
with already existing mode (SUMMARY and COMPARISON). In APP mode the tool will
compute the resource usage of an App including the indirect resource usages via system App
and other non native Apps(Apps that are not supported by android system environment). In
ALL mode the tool will consider all Apps of the input set as starting point. So the user has
to select a Cartesian product over two set of modes, which are SUMMARY,COMPARISON
and APP,ALL. So the range of inputs varies between modes, which can be categorised in the
following cases.

1. SUMMARY and APP: one .apk and non- native .apk(s).

2. SUMMARY and ALL: more than one .apks and non-native .apk(s).

3. COMPARISON and APP: one .apk, non-native .apk(s) and the previous Level 2b
analysis result.

4. COMPARISON and ALL: more than one .apks, non-native .apk(s) and the pre-
vious Level 2b analysis result.

During Level 2b SUMMARY mode, the tool does Level 1 analysis for each and every
individual .apks and the results are generated. The aggregated result is once again analysed
for any implicit intent(see Figure 4) between the .apks, to find out the resource usage of
an App via other Apps. The tool links the nodes and generates another graph linking the
different .apks if there is any implicit intent connecting them. Simultaneously the tool
will extract the declared manifest permission especially from the intent filter and compare
these permissions with the graph generated from the aggregation of all results to categorise
the permissions into five different groups(REQUIRED, MAYBE_REQUIRED, UNUSED,
MISSING, MAYBE_MISSING).

In Level 2b COMPARISON mode the first input is apk(s) and the second input is the
previous Level 2b analysis result. These two are compared and the permission are grouped into
five different groups.

Depending on the Level(1, 2a and 2b) of analysis, the result can be viewed by the user in
either graphical or textual representation. The user can also use filters to have a closer look at a
subset of the detected permissions, the filters vary for each Levels. If wanted the user can save
the analysis result or start a new analysis without saving.

2.2 Component Architecture

In the following the high-level architecture of our tool in form of a component diagram will be
introduced and described. The component diagram is given in Figure 5.

7

2.2 Component Architecture 2 HIGH-LEVEL ARCHITECTURE
C

om
ponent D

iagram
 v4

2015/07/31 pow
ered by A

stah

c

m
p

A
nalysis

E
nhancer

IA
n

alysisG
rap

h

G
raphG

enerator

A
nalyzer

IE
n

h
a

n
c

e
d

In
p

u
t

R
esultC

om
parer

N
odeLinker

M
anifestP

erm
issionC

om
parer

LeastF
ixpointC

om
puter

S
ourceA

ndS
inkC

om
puter

B
ackw

ardS
licer

IntentA
nalyzer

LayerLinker

P
erm

issionM
apper

D
ataS

torage

A
nalysisF

actory

C
lient

A
ppIdentifier

ID
isp

layR
esu

lt

C
onfigM

anager

G
U

I

C
om

m
andLine

R
esultLoader

R
esultS

torer

T
extualV

iew
C

reator

G
raphicalV

iew
C

reator

S
ootF

ram
ew

ork

Logging

X
M

LP
arser

IC
reateA

n
alysis

C
ore S

ervices

P
lugin S

ervices

IL
o

g

ID
a

ta
S

to
ra

g
e

IP
arseM

an
ifest

IT
ran

sfo
rm

A
nalysisR

unner

IR
u

n
A

n
a

lys
is

IE
xecu

te

IP
ro

vid
e

S
u

b
R

e
s

u
lts

ID
o

A
n

a
lys

is

Figure
5:C

om
ponentD

iagram
ofthe

A
ndroid

A
pp

A
nalysis

Tool

8

2 HIGH-LEVEL ARCHITECTURE 2.2 Component Architecture

On the left, the main analysis logic is modeled in the Analysis component while the user
interfaces and functionality that belong to the user are contained in the Client component
on the right. The Analysis is meant as a Plugin Service for our tool and, hence, will be
extensible and exchangeable such that our tool can be extended with additional analyses easily
in the future. Moreover, the analysis logic as a whole can be easily used by arbitrary clients
and though is very portable. Our client will be a Desktop computer application but due to
interchangeability the analysis logic can also be used for example within a web application.

At the center of the diagram is the central Logging component which provides the ILog
interface for all components to write status logs to console or file. Furthermore, there is
the component AnalysisRunner which will perform the analysis for the Client. The
Client can trigger the analysis via the IRunAnalysis interface.

Another helper for the Client is the component AnalysisFactory. This will create
an adequate analysis for the Client via the ICreateAnalysis interface which can then
be run by the AnalysisRunner.

The Analysis component contains the whole analysis logic. It provides the two in-
terfaces IDoAnalysis and IProvideSubResults to the AnalysisRunner. IPro-
videSubResults provides results from other analyses which is needed for Level 2b, that
builds upon Level 1, and similar analyses. For the project group we structured each analysis
in three processing steps Enhancer, GraphGenerator and Analyzer but in general
the Analysis may have an arbitrary internal structure. Below the Analysis are the Core
Services in form of the components XMLParser and DataStorage. The XMLParser
provides access to the information of Android Manifest Files via the IParseManifest
interface. Additionally, the DataStorage provides mappings from android system intents
and calls to the according permissions which can be retrieved through the IDataStorage
interface. Both Core Services may be used by the Analysis and its inner components. In
our diagram we decided to go without the delegations of the Core Service’s interfaces to the
inner components to achieve a clean and comprehensible overview. Details on the usage of the
Core Services will be provided later on in Section 4.

Next to the Core Services lies the SootFramework component. This component repre-
sents the plain Soot Framework which our tool is based on. Parts of the Analysis will be
extensions to Soot and therefore Soot will be executed via the interface IExecute within the
Analysis. The extensions provide the ITransform interface for Soot to work with.

Inside the Analysis the Enhancer component is the first step in our analyses. First,
the subcomponent LayerLinker extracts a hierarchical representation of the source code of
an Android App with the help of Soot. Next, the subcomponent PermissionMapper then
adds permissions to statements in code where such are used and propagates them to the higher
elements in the hierarchy, too.

The Enhancer passes its intermediate result to the GraphGenerator via the IEn-
hancedInput interface. This component will add new directed transitions between code
elements, e.g. flow edges or call edges. Therefore, the subcomponent IntentAnalyzer

9

2.2 Component Architecture 2 HIGH-LEVEL ARCHITECTURE

checks the call of other Android components via intent and the subcomponent NodeLinker
adds the kinds of edges discovered by the IntentAnalyzer and optionally by the Soot
framework.

As the last step the Analyzer receives the computed graph through the IAnalysis-
Graph interface from the GraphGenerator. The Analyzer contains a rather huge set
of components for computing the final result. This is a collection of components needed for
all three analysis levels that will be implemented by us and not all of them will be needed in
each level. The only exception is the component ResultComparer which will compare a
previous result with the newly computed result in COMPARISON mode for all levels. The other
components are used as follows:

• For Level 1 the component ManifestPermissionComparer will compare the
usage permissions that are specified in the Android manifest with those computed by the
Enhancer

• For Level 2a the components BackwardSlicer and SourceAndSinkComputer
will determine the information sources and sinks in the set of used permissions and then
perform the backward-slicing algorithm to compute information flow from sources to
sinks

• For Level 2b the component LeastFixpointComputer will compute the resource
usage between multiple Apps with the least-fixpoint algorithm

Finally, the details of the Client component will be described. The Client provides two
user interfaces. First, the component GUI allows the user to configure and trigger analyses and
view their results in a graphical user interface. The subcomponents TextualViewCreator
and GraphicalViewCreator process the result from the analysis into a textual and graph-
ical representation that is easily comprehensible for the user. In addition, the user can trigger
analyses via the command line which is specified in the CommandLine component. The
CommandLine can trigger the GUI via its IDisplayResult interface to graphic result
representations.

The Client also contains some solely functional components. The component Con-
figManager is responsible for loading analysis configurations from files and merging them
with possible configurations from the user interface. Moreover, the ResultLoader and
ResultStorer components provide the ability to load previous analysis results from files
and also to store those results to files. In the end, the component AppIdentifier identifies
an Android App with the help of the XMLParser due to its fingerprint. This is necessary for
COMPARISON mode since only different versions of the same App should be compared.

Like above for the Analysis we decided not to integrate most intra-component interfaces
for the Client for a better overview. How user interface and functionality components interact
will be explained in Section 4.

10

2 HIGH-LEVEL ARCHITECTURE 2.3 Interaction between the Components

2.3 Interaction between the Components

The following subsections illustrate how the Components introduced in Sec 2.2 interact while
doing the supported analysis level. The sequence diagrams especially show how the components
interact with the components of Analysis. The way the Analysis communicates with its
inner components depends on the level of analysis to be executed and it will be described later
in this document (see Sec. 4).

Since the communication on this level of abstraction is almost the same for level 1 and 2a
and different for level 2b,in the following two sections we have provided the descriptions for
handling these two cases.

2.3.1 Level 1 and 2a

During Level 1, the analysis will focus on the usage of permissions in a single App and
its comparison with a previous analysis result. Here, the tool will need one .apk file as
input and a previous analysis result in case if COMPARISION mode is selected. The result
presented to the User will subdivide all detected permissions into five classes as specified
in the Requirement Specification Document: REQUIRED, MAYBE REQUIRED, UNUSED,
MAYBE MISSING and MISSING and optionally compare it with a previous analysis result.

The Level 1 analysis can be performed in two ways, either we can perform a fresh analysis
of an.apk file or we can also compare one .apk file with the previous saved result. So, it
basically comprises two modes SUMMARY and COMPARISON.

The analysis of this level is described generally in a high level sequence diagrams in Figure 6
and then for each application mode (SUMMARY or COMPARISON), the detail processing is
represented accordingly in high level sequence diagrams in Figure 7 and in Figure 8. These
diagrams shows the sequence of actions taking place, how the task is performed, which steps it
needs to undertake a complete execution, In the next paragraphs, the detailed functioning of the
sequence diagram with respect to both modes is explained.

The general sequence diagram in Figure 6 describes a possible interaction of User and the
Android App Analysis tool as well as the interaction between components inside the App.
The User interacts to the Android App Analysis tool through the Client component. The
sequence activities are listed step-by-step below:

• Step1: In first step, the User configures the analysis. The User selects Level 1 or 2a,
SUMMARY or COMPARISON mode on GUI or specifies them by option parameters
in CMD-Line. Despite using the App in GUI or CMD-Line mode, the User still mainly
interacts to the Client component.

• Step2: The User specifies the necessary input (.apk file) and a previous analysis
result(optional) in case of COMPARISON mode through the Client component.

11

2.3 Interaction between the Components 2 HIGH-LEVEL ARCHITECTURE

Figure 6: High Level Sequence Diagram for Level 1 and 2a Analysis

12

2 HIGH-LEVEL ARCHITECTURE 2.3 Interaction between the Components

• Step3: The User then performs the analysis with the specified configuration and the
provided input by invoking appropriate functions supported by the Client component.
For different modes (SUMMARY and COMPARISON) the analysis is also different. It
is described clearly in sections SUMMARY Mode and COMPARISON Mode below.
After the analysis is done, the result will be visualized by the Client component.

• Step4: In case of using GUI mode, the User can filter the result based on defined criteria
offered by Client component.

• Step5: The User can also choose saving the result(for future use) or not as an additional
option. If the User wants to save it, a location should be specified by the User.

The User also can load a previous analysis result for reviewing by specifying the file to
the Client component. The component will parse the file and visualize the result to
the User.

SUMMARY Mode The analysis performed during this phase is explained in Figure 7 on a
high level. This mode will start with an .apk file as input to the tool, and then the analysis
mechanism will start.

1. First of all, the Client in turn interacts with the AnalysisFactory using the
ICreateAnalysis interface to get an appropriate Analysis to analyze the input
files.

2. After that, A3XMLParser is used to extract fingerprints of the App owner from the
.apk file. Thereafter AppIdentifier is called to check whether the.apk file is
from the same owner or from different owner, whether they are same, versioning and so
on.

3. Next, the Client passes the input .apk file to the AnalysisRunner by using the
interface IRunAnalysis and invoke the analysis function.

4. The AnalysisRunner then uses the interface IExecute supported by the Soot-
Framework to continue the analysis.

5. The SootFramework component continues the analysis by calling provided functions
in interface IDoAnalysis of component AnalysisProcedure.

6. The component AnalysisProcedure perform the analysis with these actions below:

The component interacts with the DataStorage component to get all APIs, defined
permissions of many versions of Android library. Those information will be used for
mapping permissions and linking layers in the Enhancer.

The component also interacts with the A3XMLParser to get all permissions defined in
the manifest file of the input .apk files to build a permission model.

Inside the component Analysis, first the Enhancer disassembles the .apk file
and creates a data model, then it collects all the permissions, the information got from

13

2.3 Interaction between the Components 2 HIGH-LEVEL ARCHITECTURE

DataStorage to map and link all of them together. Here layers might be Android Com-
ponents, classes, methods ot statements. Next, the Enhancer provided all linked objects
for the GraphGenerator to create a graph. The GraphGenerator also extracts
intents from those linked objects by the IntentAnalyzer and uses the NodeLiker
to build a graph for intents. The explicit graphs are passed to the Analyzer through
the interface IAnalysisGraph provided by the GraphGenerator to process the
last steps of the analysis procedure. Then the ManifestPermissionComparer is
called, which compares the permissions provided by the .apk file with that of collected
in analysis phase. After that , the result is segregated into defined subcategories as
mentioned above.

After the analysis finishes, the AnalysisRunner uses the interface IProvideSub-
Results to get the analysis result from the Analysis and returns it to the client.
Here in the Client, the analysis result is visualized for the User’s view.

COMPARISON Mode As described above that Level 1 Analyses has two modes, this mode
is used to compare analyzed result from .apk file and a previous saved result. At this mode,
after the User sets up the analysis in Step1, in the next step, User needs to give one .apk file
and one previous analysis result file as input to the Client.

In addition, the User can also continues the analysis with COMPARISON mode after
SUMMARY mode finishes. For this situation, the User just specifies the second input. They are
specified through the Client component. Before the User perform the comparison analysis,
the Client has to validate that all the input files belongs to the same application or not. It
calls the AppIdentifier component for the same purpose. If the inputs belong to different
applications, the Client will throw warning messages to the User. Otherwise, the User can
continue the comparison analysis.

1. Similarily as in SUMMARY mode, the Client also uses the ICreateAnalysis
interface (provided by the AnalysisFactory) to get appropriate Analysis for
COMPARISON mode. Beside the Analysis for the mode, the AnalysisFactory
also generates other Objects to analyze the input files if the first or the second input is
.apk file.

2. Secondly, the Client component will analyze the input .apk file in SUMMARY
mode to get the analysis result (see the section SUMMARY Mode for more detail). If
the input is previous analysis result, the Client uses the ResultLoader to load the
result in files. This step makes sure that before comparison analysis step, all the inputs
are already analyzed to get the result.

3. After the AnalysisRunner collects all required result of the inputs, using the proce-
dure got from AnalysisFactory it invokes the comparison function in the interface
IDoComparisonAnalysis(provided by the AnalysisProcedure component)
to compare the results.

14

2 HIGH-LEVEL ARCHITECTURE 2.3 Interaction between the Components

Figure 7: High Level Sequence Diagram for Level 1 and 2a Analysis - Summary

15

2.3 Interaction between the Components 2 HIGH-LEVEL ARCHITECTURE

Inside the component AnalysisProcedure, the ResultComparer takes respon-
sibility for comparing the input result and deriving the comparison result. Then the
AnalysisProcedure returns the comparison result to AnalysisRunner for con-
tinuously passing it to the Client and visualizing it for User’s view.

User can see the complete compared result from the two sources at client. Similar to the
summary mode, user here also has the option to apply certain filters on the analyzed output
result, after the filter is input, the InputFilter is passed and filtered result will be shown to
the User. Here in the end, user will have an option to save the current analyzed result.

Level 2a Analysis
During Level 2a analysis, the processing focus on the interaction between components for
intra-app information flow control analysis. In particular, based on the Component Diagram
(Figure 5.)This level extends the functioning of Level 1 analysis. With respect to the main
interactions happening between components inside the App in, the general sequence diagram in
Figure 6 associates with the diagrams in Figure 7 and in Figure 8 for illustrating the processing
in more detail.

The User interaction with the Client will be same as described above in level 1, the
process during SUMMARY and COMPARISON modes are explained below-

SUMMARY Mode In this mode Figure 7, as soon as the User invokes analyzing function
with specified configuration and provided input through the Client component. This mode
extends the fucnctioning of the level 1 Analysis. It continues the processing of level 1 from
GraphGenerator. The GraphGenerator also extracts Intents from those linked objects
by the IntentAnalyzer and uses the NodeLiker to build a graph for Intents. The explicit
graphs are passed to the Analyzer through interface IAnalysisGraph provided by the
GraphGenerator to process for the last steps of analysis procedure. The Analyzer
uses the SourceAndSinkComputer component to specify the sources and sinks in the
graphs. Finally, the BackwardSlicer is applied to derive the result based on the graphs
with sources and sinks. After the analysis finishes, the AnalysisRunner uses the interface
IGetResult to get the analysis result from the AnalysisProcedure and returns it to
the client. Here in the Client, the analysis result is visualized for the User’s view.

COMPARISON Mode As described in Figure 8 above in Level 1 Analyses Comparison mode,
this mode is used to compare analyzed result from .apk file and previous saved result.At
this mode, after the User sets up the analysis in Step1, and in the next step, User needs to give
one .apk file and one previous analysis result file as input to the Client.

In addition, the User can have some further comparisons between the analysed results , as
we have extended our roots further in Level 2a Summary mode, so at this mode analysis upto
Summary mode is carried and then the comparison is carried out between the current result and

16

2 HIGH-LEVEL ARCHITECTURE 2.3 Interaction between the Components

Figure 8: High Level Sequence Diagram for Level 1 and 2a Analysis - Comparison

17

2.3 Interaction between the Components 2 HIGH-LEVEL ARCHITECTURE

previous saved analysed result. The brief description of the process taking place specifically
during this mode is explained below-

After the AnalysisRunner collects all required result of the inputs, using the proce-
dure got from AnalysisFactory it invokes the comparison function in the interface IDo-
ComparisonAnalysis(provided by the AnalysisProcedure component) to compare
the results. Inside the component AnalysisProcedure, the ResultComparer takes
responsibility for comparing the input result and deriving the comparison result. Then the
AnalysisProcedure returns the comparison result to AnalysisRunner for continu-
ously passing it to the Client and visualizing it for User’s view.

2.3.2 Level 2b

During Level 2b Analysis, the Android App Analysis tool will take Inter-App data resource
usage into account. This is an extension to the functionality of Level 1. In this level our tool
additionally computes the resources used by an App via other foreign Apps, meaning Apps
that are not system native. Hence, it covers the possibility to use data resources indirectly by
calling another App’s component. As required our tool will extend the two modes SUMMARY
or COMPARISON with a parameter of computation range, APP and ALL. In APP mode the
tool will compute the resource usages of an App including the indirect resources usage via
system Apps and other non-native Apps in addition in ALL mode to considering all Apps of
the input set as starting point.

The analysis of this level is described generally in a high-level sequence diagram Figure 6
and then for each application mode (SUMMARY or COMPARISON), the detail processing is
represented accordingly in high-level sequence diagram in Figure 9 and in Figure 10 showing
the sequence of actions taking place, how the task is performed, which steps, it needs to
undertake to forfeit complete execution. In the next Paragraphs, all the detail of the sequence
diagrams with respect to both the modes is explained.

The general sequence diagram in Figure 6 describes all possible interaction of User and the
Android App Analysis tool as well as the interaction between components inside the App. The
User interacts with the Android App Analysis tool through Client , similar to the previous
levels, i.e the interaction between the User and Client remains consistent through out all
levels of analysis. One change here is the input to the Client, here input can be set of .apk
files or previous saved results, no bar on them.

1. Step1: At first step, the User configures analysis. The User selects Level 2b, SUMMARY
or COMPARISON mode on GUI or specifies them by option parameters in Command
Line. Despite using the App in GUI or Command Line mode, the User still mainly
interacts with the Client component.

2. Step2: Then, the User specifies the necessary input (.apk file) and previous analysis
result (optional) in case of COMPARISON mode through the Client components.

18

2 HIGH-LEVEL ARCHITECTURE 2.3 Interaction between the Components

Notable change here is that no bar on combination of .apk file and previous saved result
as Input to Client.

3. Step3:The User then performs analysis with the specified configuration and the provided
input by invoking appropriate functions supported by Client component. For different
modes (SUMMARY or COMPARISON), the analysis is also different. It is described
clearly in following sections SUMMARY and COMPARISON . After the analysis is
done, the result will be visualized by Client component.

4. Step4: In case of using GUI mode, the USER can filter the result based on defined criteria
offered by Client component.

5. Step5: The User can also choose saving the result(for future use) or not as an additional
option. If the User want to save it, a location should be specified by the User.

The User also can load a previous analysis result for reviewing by specifying the file to
the Client component. The component will parse the file and visualize the result to
the User.

SUMMARY Mode In this mode, at first the analysis of Level 1 Figure 7 is carried out. After
generating the processed result from Level 1 , it is then passed to GraphGenerator. The
GraphGenerator class also has aggregation relation with two other level specific classes
IntentAnalyzer and NodeLinker. The GraphGenerator component is called to
build a graph for the collection of results which is given as input.The IntentAnalyzer
class has a constructor which passes ResultInput as argument. In Level 2b the In-
tentAnalyzer component is important to analyze implicit intent, to track the
communication between two or more Apps. The function of the IntentAnalyzer varies
between different modes. Then, based on that it will compute the least fixed pointc which
passes and returns an AnalysisGraph. Finally, it will generate the final analysis result of
the Summary mode of this level to the AnalysisProcedure component, which in turn will
pass it to the AnalysisRunner component. The user can then add filters and have an option
in the end to save the current result to be used in the later prospect , this process is very similar
to the levels of analysis stated above (1 and 2a).

COMPARISON Mode As described in Figure 10 above , this mode is used to compare
analyzed result from a set of .apk files with a previous saved result .In this mode, after the
User sets up the analysis in Step1, and in the next step, the User needs to give a set consisting
of .apk file or one previous analysis result file as input to the Client. In addition, the User
can have some further comparisons between the analysis results, as we have extended our roots
further in Level 2b Summary mode, which is an extension of Level 1 analysis. So Summary
mode of Level 2b is carried out for each .apk file or the previous result is loaded from the
ResultLoader and then the comparison is carried out. The brief description of the process
taking place specifically during this mode is explained below.

19

2.3 Interaction between the Components 2 HIGH-LEVEL ARCHITECTURE

Figure 9: High Level Sequence Diagram for Level 2b Analysis - Summary

20

2 HIGH-LEVEL ARCHITECTURE 2.3 Interaction between the Components

Figure 10: High Level Sequence Diagram for Level 2b Analysis - Comparison

21

3 SOOT FRAMEWORK

1. Firstly, similar as in SUMMARY mode, the Client also uses the ICreateAnalysis-
Procedure interface (provided by the AnalysisFactory) to get an appropriate
Analysis Object for COMPARISON mode. Beside this Object, the AnalysisFac-
tory also generates other Objects to analyze the input files if the first or the second
input is .apk file.

2. Secondly, in the case that the input file is .apk, the Client component will analyze it
in SUMMARY mode to get the analysis result (see the section SUMMARY mode for more
detail). If the input is a previous analysis result, the Client uses the ResultLoader
to load the result in files. This step makes sure that before comparison analysis step, all
the inputs are already analyzed to get the result.

3. After the AnalysisRunner collects all required result of the inputs, using the Anal-
ysis Object got from AnalysisFactory it invokes the comparison function in
the interface IDoAnalysis(provided by the AnalysisProcedure component) to
compare the results.

4. Then the Analyzer invokes computeFixedPoint and getLeastFixedPoint-
FromPreviousResult to make it available for the ResultComparer

Inside the component AnalysisProcedure, the ResultComparer takes respon-
sibility for comparing the input result and deriving the comparison result. Then the
AnalysisProcedure returns the comparison result to the AnalysisProcedure
for continuously passing it to the Client and visualizing it for the user’s view.

3 Soot Framework

Soot is a static analysis framework developed by Sable Research Group from McGill University
1. It was initially developed for analysing, transforming and optimizing Java bytecode. Besides
Java, it also supports other input languages such as SML, Eiffel and Scheme. The Soot users
then, based on the intermediate representations (Jimple, Shimple, Grimp, Baf and Dava) at
appropriate abstraction level, can extend or add new analyses and optimizations on bytecode.
Soot constructs call graphs for a whole-program analysis or in particular for a inter-procedural
analysis. Soot also provides a variety of intra-procedural analyses. We will be using a nightly-
build of Soot for our project. This can be obtained from their Website2.

The sections below will briefly describe some main features used in components of the
Component diagram in Figure 5 and how Soot will be used in the project.

1https://github.com/Sable/soot
2https://ssebuild.cased.de/nightly/soot/

22

3 SOOT FRAMEWORK 3.1 Soot’s Features

Figure 11: Phases in Soot; Figure taken from: https://github.com/Sable/soot/wiki/Packs-and-
phases-in-Soot

3.1 Soot’s Features

Soot’s execution is divided into a number of phases. Each phase in turn comprises of several sub-
phases. The behaviour of a phase can be modified using associated phase options. Within Soot,
each phase is implemented using a Pack. Each Pack consists of several Transformers
corresponding to sub-phases of the phase that is being implemented. The main Soot phases
used in the project are jb (Jimple body creation), cg (Call graph generation), wjtp (Whole
program transformation) and jtp (intra-procedural phase). To work on these packs of phases,
Soot provides options to create and add new sub-phases to specific packs. Figure 11 provides
an idea overview of the various packs implemented in Soot and their sequence of execution.

Jimple is a typed three-address intermediate representation for bytecode. The first phase of
Soot (the Jimple body creation jb) is used to convert the input files into Jimple representation.
For Android applications, Soot provides a plug-in called Dexpler that support Soot users to
work on Android Dalvik bytecode besides the Java bytecode. Soot takes the .apk file
as input and then disassembles it to Jimple intermediate representations. In Jimple, each class
is represented as a SootClass, each SootClass contains a collections of SootFields
and SootMethods. Each SootMethod consists of a set of Stmt statements that form a

23

3.1 Soot’s Features 3 SOOT FRAMEWORK

body for the method. The intermediate representation then is used in many phases later on of
Soot’s execution for analyses.3

Call graph supported in Soot is mainly used for inter-procedure analyses. It provides infor-
mation about the call site (statement or method from where a call to another method is
made) and all possible targets of that call site. It is a collection of edges representing
all known method invocations. Each edge contains four elements: source method, source
statement, target method and the kind of edge. The Call Graph is initialized for the whole pro-
gram in the pack cg and in this pack different sub-phases construct call graphs using different
algorithms. Soot provides four algorithms for constructing a call graph, namely RTA (Rapid
Type Analysis), CHA (Class Hierarchy Analysis), VTA (Variable-Type Analysis) and SPARK
(Soot Pointer Analysis Research Kit). Each algorithm is implemented by a pack of the same
name. In the project Android Application Analysis, CHA and SPARK packs will be mainly
used. In particular, the simplest call graph is obtained by CHA algorithm which assumes that all
reference variables can point to any object of the correct type. SPARK generates the call graph
and in addition, provides a point assignment graph (PAG) to support points-to analysis required
for inter-procedure analysis. Soot users can specify a concrete algorithm for constructing a call
graph and by default Soot always enables the phase cg to construct a call graph for the next
phase (the Whole Jimple Transformation Pack wjtp) where the inter-procedural analysis will
be performed. One problem associated with generating call graphs for Android applications is
that Android applications do not have a main() method. But Soot requires a main() method
and a list of entry points for the call graph. To solve this, we will be creating a dummy
main() method and also identify a list of entry points and provide it to Soot for call graph
construction. How this will be realised, will be explained in the Implementation Details Section
3.2

Inter-procedural analysis is a static analysis that requires a call-graph and pointer informa-
tion. The analysis will be defined in the Whole Jimple Transformation Pack or the wjtp phase.
The most important thing is that the call graph can only be obtained in the whole-program
mode which is specified by the option -w to Soot. In this wjtp phase, Soot’s users create a
new transformer which mainly works on the call graph and other analysis (such as point-to
analysis, side effect analysis etc.). This new transformer later on is added to the current pack of
the wjtp phase.

Intra-procedural analysis is the key feature of Soot. The phase jtp is the place for user-
defined intra-procedural analysis. Here, Soot users can create a data-flow analysis by specifying
the abstraction and implementing a transfer function. The analysis works mainly on the control
flow graph - built by UnitGraph where each node is a statement or an expression and each

3Patrice Pominville, Feng Qian, Raja Vallee-Rai, Laurie Hendren, Clark Verbrugge A Framework for Optimizing
Java Using Attributes

24

3 SOOT FRAMEWORK 3.2 Implementation Details

edge is the control flow path between two nodes if available. The data-flow analysis associates
two flow sets with each node in the unit graph, usually one in-set and one out-set. The traced
information or data would be inspected in the flow set before and after each statement. Soot
also supports an abstract class FlowAnalysis to specify the flow of analysis (forward or
backward). Again, Soot users need to create a new transformer extended from Soot and add
them to the current pack jtp.

3.2 Implementation Details

For using features of Soot, a number of options should be specified. Soot options can be broadly
classified into several option groups like input options, output options, general options, phase
options etc. A detailed list of the various Soot options and possible values that can be passed,
can be found at the developers’ website 4. In addition, some extended implementation for
analysis also need to be taken into account. Depending on the type of analysis, inter- or intra-,
the implementation would be placed in the appropriate phases which are already mentioned in
the previous section.

3.2.1 Running Soot

In the Android Application Analysis project, the options below must be specified for running
Soot.

General options are general configurations for running Soot.

-w for running Soot in whole-program mode.

Input options are specifications for the input before running Soot.

-pp prepends the given Soot classpath to the default classpath.

-soot-class-path /android-platforms-master specify the path to the plat-
form JAR files which are Android standard libraries that Soot requires for resolving types
of analysed Apps. Here the android-platforms-master is the directory that con-
tains all those JAR files. Another way for specifying the Android library is using the option
-android-jars /android-platforms-master.

-src-prec apk sets source precedence to apk file because the input file for this project
will alway be .apk file.

-allow-phantom-refs allows unresolved classes. This option is mainly used for
classes in external library or in system library because those classes are not the targets for
analysing in the project.

4https://ssebuild.cased.de/nightly/soot/doc/soot_options

25

3.2 Implementation Details 3 SOOT FRAMEWORK

-no-bodies-for-excluded to not load any method bodies of classes specified in the
"exclude" package.

-procecc-path dir process the input .apk file found in this dir.

Output options because for this project, no output is required. The following option is
specified

-output-format none sets Soot not to produce any output file.

Processing options specifies setting for Soot’ process.

-phase-option cg cg.spark:on specify the SPARK algorithm for constructing
the call graph in phase cg. Besides SPARK, there are other algorithms such as Rapid Type Anal-
ysis RTA (cg.rta), Variable Type Analysis VTA (cg.vta) and Class Hierarchy Analysis
CHA (the default call graph constructor).

Application mode options specify the package or set up for the classes.

-exclude pkg excludes the package pkg that contains the Android libraries such as
android.*. This option might be specified or not based on the purpose of the analysis.

After all required options are specified, Soot is executed by calling soot.Main available
in the library soot-trunk.jar5. The various options that will be used to configure Soot are
passed as a string argument to the soot.Main program. This will execute all the packs in
the Soot in sequence. Because Soot’s execution is divided into many phases, Soot also
provides the option to run particular phases only. For example the method PackMan-
ager.v().getPack("cg").apply(); is called to perform execution in this phase
cg only. Even Soot users can call all packs executing at once by using PackManager.v()
.runPacks(). This feature allows Soot users to flexibly run their own analyses in specific
phases.

3.2.2 Creating Entry Point

We have to create a dummy main method for the Android application, so that it can be used
in Soot for call graph generation. Soot provides the option to create a Class from scratch and
add methods and statements to the created class. We obtain the list of component classes in the
Android application from the Manifest file. We have to compute the entry points for each
component based on the Android life cycle of that component. In general, these entry points
will be some of the methods declared in the component. With Soot, we will create a dummy
main class using Soot’s SootClass object. We will then create a dummy main method using

5’trunk’ represents nightly build of Soot

26

3 SOOT FRAMEWORK 3.2 Implementation Details

SootMethod object and add this method to the dummy main class. Within the body of this
dummy main method, we will add instances of the component classes and other classes used
in the application. We then add Invoke Statements that use the class instances to make
calls to the identified entry point methods. This dummy main method will then be set as the
entry point for our analysis to generate call graph.

3.2.3 Adding own analysis to Soot

Soot provides the approach to add user-defined sub-phases without modifying Soot’s structure.
This is done by creating a new class that extends BodyTransformer or SceneTrans-
former. Both provide a way for performing analysis or make transformation on a single
method body (intra-procedural) and on a whole application (inter-procedural). All extended
classes from both of these transformers should override the internalTransform(...)
method for different analysis purposes.

Inter-procedural analysis The SceneTransformer is used in phase wjtp. It executes
once and may analyze and manipulate the entire program. Therefore for the inter-procedural
analysis, Soot users create a new transformer extended from SceneTransformer and add it
to the wjtp pack. When overriding the method internalTransform(...), Soot users
can get a call graph which is computed in the previous phase cg. The call graph can be
accessed through the environment class Scene with the method getCallGraph(). Then
Soot users can query for the edges coming into a method or going out of a method or for
edges going out of a particular statement (by using those methods edgesIto(method),
edgesOutof(method) and edgesOutOf(statement)).

In the implementation of LayerLinker, the class LinkTransformer will extend
SceneTransformer of Soot and override the internalTransform(...) method.
Then using Soot’s methods, the list of classes, the corresponding methods and statements can
be obtained which will be the input for the addStatement(...),addMethod(...) and
addClass(...) methods of the LayerLinker. For example the Soot utility getAp-
plicationClasses() will return a list of application classes, which will then be used as
input for the addClass(...) method of the LayerLinker.

Another instance, where we want to use Inter-procedural analysis in our tool, will be in the
implementation of NodeLinkerLvl2a. This class will use NodeLinkTrasnformer-
Part1, an extension of SceneTransformer. In the overwritten internalTrans-
form(...) method, Soot method getCallGraph() will be used to obtain the call graph
for the Android application under analysis. The getGraphsFromSoot(...) method will
then use the call graph from the previous step and assign it to callGraph variable in our tool.

Intra-procedural analysis The BodyTransformer is most suitable for intra-procedural
analysis. This analysis is to be added to the phase jtp which means the transformer is executed

27

4 REFINED ARCHITECTURE

on each method in a program. In particular, Soot users perform an analysis on the control
flow graph supported in the three basic unit graphs - BriefUnitGraph, Exception-
alUnitGraph and TrapUnitGraph. In addition, Soot users also need to declare a class
extended from FlowAnalysis to specify the flow of analysis. Soot provides three classes
that extend the AbstractFlowAnalysis class. They are ForwardFlowAnalysis,
BackwardFlowAnalysis and BranchedFlowAnalysis. Depending on the type of
analysis, a Soot user can choose appropriate abstract class. For example, for Available Ex-
pression Analysis, the abstract class must be ForwardFlowAnalysis or for Live Variable
Analysis, the abstract class must be BackwardFlowAnalysis.

In our tool, we will be using Intra-procedural analysis during the implementation of
NodeLinkerLvl2a. NodeLinkerLvl2a will use the class NodeLinkTransformer-
Part2 which will be an extension of Soot’s BodyTransformer. Within the overwritten in-
ternalTransform(...) method, for each method in the Android application, an object of
ExceptionalUnitGraph will be created. The ExceptionUnitGraph objects for all
the methods will be added to a list. getGraphsFromSoot(...) method of NodeLink-
erLvl2a will assign this list to the variable methodFlows.

4 Refined Architecture

This section describes the detailed class structure of our tool. Therefore, we start by describing
the overall framework in Sec. 4.1. This structure then is refined for the different levels with
level-specific details in Section 4.2, 4.3 and 4.4. Finally, Section 4.5 describes the detailed
structure of the user interface as well as the client.

Note that whenever a method that uses parameters is mentioned in the following subsections
the parameters are not mentioned in the brackets but visualized by dots. This is done since there
will be no two methods with same name that differ only in the parameters. But all parameters
can be found when looking up the method in the corresponding diagrams.

The class and sequence diagrams in this section will use four different colors for classes to
distinguish between different roles of the classes. Green displays that the class is a soot class,
whereas blue describes an interface or abstract class. The red classes are mainly used in the
subsections related to the three levels (see Sec. 4.2, Sec. 4.3 and Sec. 4.4). All remaining
classes are displayed in light yellow.

One more remark has to be mentioned concerning the Logging component (see Fig. 5).
This component is not mentioned explicitly in the now following refinement to ensure easily
comprehensible diagrams. Nevertheless, in our tool logging will be realized using a logging
framework which will be accessed by all of the classes to log their current status while doing
their tasks.

28

4 REFINED ARCHITECTURE 4.1 Overall Framework

4.1 Overall Framework

In the following the overall framework of our tool will be described. This part of the tool
contains the core analysis logic and serves a a basis for our 3 analysis levels. Moreover, the
framework provides core services to be used by the analyses as well as the Soot framework.

4.1.1 Analysis

The class diagram of the tool framework is given in Figure 12. The framework will provide the
interface AnalysisProcedure for performing arbitrary analyses on Android Apps. There
are two kinds of analyses: An initial analysis that analyzes an Android App from scratch should
be performed when the method doInitialAnalysis(...) is called. The second type
of analysis is triggered with the method doAggregationAnalysis(...) and should
aggregate a list of intermediate AnalysisResults into a new result.

For our project group we will use the class A3AnalysisProcedure to perform our
three analysis levels. Our analyses consist of three steps as described previously in Section 2.2.
The Enhancer class is the refinement of the Enhancer component. This class will be the
same for all our analysis levels and, hence, can be defined directly. The concrete structure
and behavior of the Enhancer class will be described in Section 4.1.4. The other two
steps, the GraphGenerator component and afterward the Analyzer component, are level
dependent. For the tool framework they are substituted by interfaces of the same name. Both
interfaces provide a single method to process the information during an analysis. The concrete
implementations will be passed to the A3AnalysisProcedure in the constructor during
analysis configuration.

Every AnalysisProcedure will be run by an instance of the Analysis class. It man-
ages the required inputs, namely the .apk file, the previous result prevRes for COMPARISON
mode and the list of intermediate results subResults, which will be passed to the Anal-
ysisProcedure during analysis. The type of the analysis (initial or aggregation) will be
determined by the parameter apkFile in the constructor. If apkFile is null the type will
be an aggregation analysis and an initial analysis in the other case.

The class AnalysisRunner provides a single interface for the Client to run a complete
analysis which is in fact a list of Analysis objects that build up on each other. Such a structure
is need for Level 2b which builds upon multiple Level 1 results. For Level 1 and Level 2a the
provided list will only contain a single Analysis object since both analyses analyze only a
single Android App.

To support the Client in configuring complex analyses, the tool framework provides the
AnalysisFactory interface. Each analysis will have to extend this interface such that
the Client can instantiate a factory with a set of configuration parameters and then call
createAnalysis() to retrieve the preconfigured list of Analysis objects.

29

4.1 Overall Framework 4 REFINED ARCHITECTURE
C

lass D
iagram

 F
ram

ew
ork A

nalysis
2015/07/31 pow

ered by A
stah

p

kg

+
 doA

nalysis() : A
nalysisR

esult
+

 aggregates() : boolean
+

 provideS
ubR

esults(results : List<
A

nalysisR
esult>

) : void
+

 A
nalysisP

rocedure(apkF
ile : F

ile, prevR
es : A

nalysisR
esult, a

p : A
nalysisP

rocedure)

- ap : A
nalysisP

rocedure
- subR

esults : List<
A

nalysisR
esult>

- apk : F
ile

- prevR
es : A

nalysisR
esult

- aggregates : boolean

A
n

alysis

+
 A

3A
nalysisP

rocedure(gen : G
raphG

enerator, an : A
nalyzer)

A
3A

n
alysisP

ro
ced

u
re

+
 collectR

esults(results : List<
A

nalysisR
esult>

) : R
esultInput

+
 enhance(apk : F

ile) : E
nhancedInput

E
n

h
an

cer

+
 generateG

raph(in : Input, apk : F
ile) : A

nalysisG
raph

<
<

interface>
>

G
rap

h
G

en
erato

r

+
 analyze(ag : A

nalysisG
raph, prevR

es : A
nalysisR

esult) : A
nalysisR

esult

<
<

interface>
>

A
n

alyzer

1

uses

1

uses

1

uses

+
 analyze(anaList : List<

A
nalysis>

) : A
nalysisR

esult

A
n

alysisR
u

n
n

er

+
 createA

nalysis() : List<
A

nalysis>

<
<

interface>
>

A
n

alysisF
acto

ry

If no apk w
ill be needed,

param
eter w

ill be null.
If no previous result w

ill be
needed, param

eter w
ill be null.

A
ggregates field w

ill be
assigned autom

atically
depending on param

eters.

<
<

uses>
>

<
<

creates>
>

+
 doInitialA

nalysis(apkF
ile : F

ile, prevR
es : A

nalysisR
esult) : A

nalysisR
esult

+
 doA

ggregationA
nalysis(subR

esList : List<
A

nalysisR
esult>

, prevR
es : A

nalysisR
esult) : A

nalysisR
esult

<
<

interface>
>

A
n

alysisP
ro

ced
u

re

1

has

Figure
12:C

lass
D

iagram
ofthe

ToolFram
ew

ork

30

4 REFINED ARCHITECTURE 4.1 Overall Framework

Framework Analysis 2015/07/31 powered by Astah

Framework Analysissd

Client

 : AnalysisRunner

<<create>>
1: init()

2: analyze(anaList:List<Analysis>) : AnalysisResult

loop [Analysis items left in list]

 : Analysis

2.1: aggregates()

[Analysis aggregates]opt

2.2: provideSubResults()

2.3: doAnalysis()

Framework Analysis Detail

ref

2.4: storeResult()

2.5: selectLatestResultForReturn()

Figure 13: Sequence Diagram of the Analysis Framework

After describing the structure of the tool framework, the behavior during an analysis triggered
by the Client will be explained. The according sequence diagram is shown in Figure 13
and Figure 14. The Client triggers an analysis by instantiating the AnalysisRunner
and calling its analyze(...) method. The AnalysisRunner will process each of the
Analysis objects in the given list.

For each Analysis the AnalysisRunner requests the type of the Analysis by
calling aggregates(). If the type is aggregation, the AnalysisRunner provides the
previously collected results to the Analysis via provideSubResults(...). Finally, it
calls the doAnalysis() method to start the analysis.

Depending on the analysis type (aggregation or initial) the Analysis will call doAg-
gregtionAnalysis(...) or respectively doInitalAnalysis(...) on our class
A3AnalysisProcedure. The method doAggregtionAnalysis(...) will call
collectResults(...) of the Enhancer to get an initial data representation to do

31

4.1 Overall Framework 4 REFINED ARCHITECTURE

F
ram

ew
ork A

nalysis D
etail

2015/07/31 pow
ered by A

stah
F

ram
ew

ork A
nalysis D

etail
sd

 : A
nalysis

 : A
3A

nalysisP
rocedure

[A
nalysis aggregates not]

[A
nalysis aggregates]

alt

1: doA
ggregationA

nalysis(subR
esList:List<

A
nalysisR

esult>
, prevR

es:A
nalysisR

esult) : A
nalysisR

esult

 : E
nhancer

1.1: collectR
esults(results:List<

A
nalysisR

esult>
) : R

esultInput

 : G
raphG

enerator

1.2: generateG
raph(in:Input, apk:F

ile) : A
nalysisG

raph

 : A
nalyzer

1.3: analyze(ag:A
nalysisG

raph, prevR
es:A

nalysisR
esult) : A

nalysisR
esult

2: doInitialA
nalysis(apkF

ile:F
ile, prevR

es:A
nalysisR

esult) : A
n

alysisR
esult

2.1: enhance(apk:F
ile) : E

nhancedInput

2.2: generateG
raph(in:Input, apk:F

ile) : A
nalysisG

raph

2.3: analyze(ag:A
nalysisG

raph, prevR
es:A

nalysisR
esult) : A

nalysisR
esult

Figure
14:D

etailSequence
D

iagram
ofthe

A
nalysis

Fram
ew

ork

32

4 REFINED ARCHITECTURE 4.1 Overall Framework

the further analysis with. On the other hand, doInitialAnalysis(...) triggers en-
hance(...) of the Enhancer to reach the same goal. After that the AnalysisProce-
dure calls generateGraph(...) of the GraphGenerator to continue the processing
for both analysis types. The final step is to call analyze(...) on the Analyzer to retrieve
the final result. This will again be done for both analysis types, aggregation and initial.

After the AnalysisRunner received the result, it stores the result before continuing the
processing of the Analysis objects in the list. When all Analysis objects are processed,
the AnalysisRunner will select the result stored most recently to return to the Client.

4.1.2 Data Structures

In this section we will describe the data structures that are used to store information during
and after an analysis. The class diagram of those data structures is given in Figure 15. First,
we have the interface Input that is used to combine the two classes ResultInput and
EnhancedInput. The ResultInput is just a wrapper around a list of AnalysisRe-
sults which is needed for aggregation analyses like Level 2b. The EnhancedInput is
more interesting in the sense that it represents the complete source code of an Android App.
An EnhancedInput therefore contains a single instance of the class App. The structure for
the App is hierarchical and organized as follows:

• An App contains at least one Class. Some of those classes may be one of the four
Android Components. Each App can also be identified by its fingerprint which
is a String

• A Class contains at least a Method or a class variable which is modeled by the class
Statement. A Class may also have some subclasses of the same type which will
have access to all methods and fields of the surrounding Class. To identify a Class
the method getSignature(), that returns a String combined from package and class
name, can be called. The specialization Component additionally contains a type
which will be one of the four Android Component types. In case the component is a
content provider it may also contain a list of of URIs for which temporary permissions
are specified in the Android Manifest for this content provider. Otherwise the list will be
empty.

• A Method contains at least a single Statement. It has a returnType and a list
of parameters stored as Strings. Methods can also be identified via the getSigna-
ture() method which here returns a String build up from the surrounding Class
signature, the method name and the parameter types.

• A Statement is the lowest item in the hierarchy and represents an assignment or a
method call.

All classes described in the list above extend the abstract class Element. This class provides
the ability to add a set of Android usage Permissions to each Element and also the

33

4.1 Overall Framework 4 REFINED ARCHITECTURE
C

lass D
iagram

 F
ram

ew
ork D

ata S
tructures

2015/07/31 pow
ered by A

stah

p
kg

+
 getA

nalysisG
raph() : A

nalysisG
raph

+
 getM

essages() : C
ollection<

M
essage>

+
 addM

essage(m
sg : M

essage) : void
+

 getF
ilters() : List<

S
tring>

+
 getD

etailLevels() : List<
D

etailLevel>
+

 getT
extualR

esult(vl : D
etailLevel, filters : List<

S
tring>

) : S
tring

+
 getG

raphicalR
esult(vl : D

etailLevel, filters : List<
S

tring>
) : S

tring

A
n

alysisR
esu

lt

+
 getInput() : Input

+
 getM

essages() : C
ollection<

M
essage>

+
 addM

essage(m
sg : M

essage) : void
+

 getIncom
ingT

ransitions(e : E
lem

ent) : C
ollection<

T
ransition>

+
 getO

utgoingT
ransitions(e : E

lem
ent) : C

ollection<
T

ransition>
+

 addT
ranstion(t : T

ransition) : void
+

 A
nalysisG

raph(inp : Input)

A
n

alysisG
rap

h

~
 addM

ethod(signature : S
tring, m

 : M
ethod) : void

~
 addC

lass(signature : S
tring, c : C

lass) : void
+

 getM
ethod(signature : S

tring) : M
ethod

+
 getC

lass(signature : S
tring) : C

lass
+

 getA
pp() : A

pp
+

 E
nhancedInput(app : A

pp)

E
n

h
an

ced
In

p
u

t

<
<

interface>
>

D
etailL

evel

+
 getB

ody() : S
tring

+
 getT

itle() : S
tring

+
 getT

ype() : M
essageT

ype
+

 M
essage(type : M

essageT
ype, title : S

tring, body : S
tring)

- body : S
tring

- title : S
tring

- type : M
essageT

ype

M
essag

e

+
 IN

F
O

 : E
num

erationE
lem

ent
+

 S
U

G
G

E
S

T
IO

N
 : E

num
erationE

lem
ent

+
 W

A
R

N
IN

G
 : E

num
erationE

lem
ent

+
 E

R
R

O
R

 : E
num

erationE
lem

ent

<
<

enum
>

>
M

essag
eT

yp
e

+
 getN

am
e() : S

tring
+

 P
erm

ission(nam
e : S

tring)

- nam
e : S

tring

P
erm

issio
n

+
 getN

am
e() : S

tring
+

 getP
arent() : E

lem
ent

+
 getC

hildren() : List<
E

lem
ent>

+
 addP

erm
ission(perm

 : P
erm

ission) : void
+

 getP
erm

issions() : C
ollection<

P
erm

ission>
+

 E
lem

ent(nam
e : S

tring)

- visibility : int
- nam

e : S
tring

E
lem

en
t

~
 addC

lass(c : C
lass) : void

+
 getF

ingerpint() : S
tring

+
 A

pp(nam
e : S

tring, fingerprint : S
tring)

- fingerprint : S
tring

A
p

p

1
has

~
 addC

lass(c : C
lass) : void

~
 addC

lassV
ariable(cv : S

tatem
ent) : void

~
 addM

ethod(m
 : M

ethod) : void
+

 getS
ignature() : S

tring
+

 getP
ackage() : S

tring
+

 C
lass(nam

e : S
tring, package : S

tring)

- package : S
tring

C
lass

+
 getC

ontentP
roviderU

R
Is() : List<

S
tring>

+
 setC

ontentP
roviderU

R
Is(uris : List<

S
tring>

) : void
+

 getT
ype() : S

tring
+

 C
om

ponent(nam
e : S

tring, package : S
tring, type : S

tring)

- contentP
roviderU

R
Is : List<

S
tring>

- type : S
tring

C
o

m
p

o
n

en
t

0..1parent

0..*

uses

~
 addS

tatem
ent(s : S

tatem
ent) : void

+
 getS

ignature() : S
tring

+
 getP

aram
eters() : List<

S
tring>

+
 getR

eturnT
ype() : S

tring
+

 M
ethod(nam

e : S
tring, returnT

ype : S
tring, param

s : List<
S

tring>
)

- param
eters : List<

S
tring>

- returnT
ype : S

tring

M
eth

o
d

+
 S

tatem
ent(nam

e : S
tring)

S
tatem

en
t

0..*

children

1..*
children

1..*
children

1..*
children

1

has

+
 getT

arget() : E
lem

ent
+

 getS
ource() : E

lem
ent

+
 T

ransition(from
 : E

lem
ent, to : E

lem
ent)

T
ran

sitio
n

1

from1

to

0..*

has
R

ealized as M
ultiM

ap<
E

lem
ent,T

ransition>
 for

outgoing and incom
ing transitions

1

has

<
<

uses>
>

<
<

uses>
>

T
he graphical result

S
tring w

ill be prvided in
the G

raphviz D
O

T

language. T
he textual

result S
tring w

ill be
provided in H

T
M

L5.

<
<

interface>
>

In
p

u
t

+
 getR

esults() : List<
A

nalysisR
esult>

+
 R

esultInput(results : List<
A

nalysisR
esult>

)

R
esu

ltIn
p

u
t

1..*

has

0..*

children

0..*

has

0..*

has
1..*

has

1..*

has

R
ealized as M

ap<
S

tring,E
lem

ent>
 for m

ethods
and classes for fast access. T

he S
tring is the

signature.

Figure
15:C

lass
D

iagram
ofthe

ToolD
ata

Structures

34

4 REFINED ARCHITECTURE 4.1 Overall Framework

methods getChilden() and getParent() for moving up and down in the hierarchy. We
will not go into more detail here, since the rest of this data structure consists of self-explanatory
setter and getter methods. The EnhancedInput additionally contains two maps for a quick
access of Classes and Methods via their signature which may speed up the processing in
the GraphGenerator.

The GraphGenerator will extend the Input with additional directed edges. Therefore,
the Input will be wrapped into an AnalysisGraph. Edges are represented by the class
Transition which has a source and a target Element. Hence, Transitions can connect
arbitrary parts of source code depending on the analysis that should be performed on that
AnalysisGraph. Inside the AnalysisGraph the Transitions are stored inside two
multimaps6 for a fast access of incoming and outgoing Transitions for one Element.

The last step of the analysis chain will produce an instance of a specialization of the abstract
class AnalysisResult which wraps the AnalysisGraph. This specialization contains
the result information depending on the performed analysis and will be forwarded to the
Client.

For gaining the ability of the analysis framework to be used by arbitrary clients, we have
to specify some standards for how the AnalysisResult provides its information to the
Client. For the textual result representation we want to provide preformated text, e.g. font
color for the permission groups in Level 1 and 2b, and therefore we will use the HTML57

language. The same requirements have to hold for the graphical result representation. Here
we chose the Graphviz DOT8 language. This language describes arbitrary graphs and, hence,
on the downside we have to stick to graphs for graphical representations. But this should
be fine since a graph can model arbitrary relations between objects and using subgraphs we
will even be able to model hierarchies. Both languages are widely used for the purposes they
are made for and, hence, there exist multiple programs and tools to also process the result
representations externally when saved to a file as String. For us, this is also an indicator that we
are well-advised to use this languages for providing the result representations to the user.

The AnalysisResult also provides detail levels and filters. Those are again analysis
dependent and will be provided to the Client through the methods getDetailLevels()
and getFilters(). The Client can now select a DetailLevel and a subset of the filter
Strings and request a textual or graphical result representation from the AnalysisResult
by calling the methods getTextualResult(...) or getGraphicalResult(...).

Moreover, the AnalysisGraph and the AnalysisResult may contain a set of Mes-
sages. Those Messages can be of different types (MessageType), have a title and a
message body and will contain user information about special properties of the analyzed App
or Apps that were discovered during graph generation and result computation. The Client

6A multimap can store multiple values under a key.
7For specification see: http://www.w3.org/TR/html5/
8For specification see: http://www.graphviz.org/content/dot-language

35

http://www.w3.org/TR/html5/
http://www.graphviz.org/content/dot-language

4.1 Overall Framework 4 REFINED ARCHITECTURE

can access the result messages through the method getMessages() to provide them to the
user in an appropriate form.

4.1.3 Core Services

As described in the high level structure diagram in Section 2.2 our tool framework will contain
several core services that provide their functionality to the analyses and to the Client. In the
future additional core services may be added to extend the framework features for other kinds
of analyses. To be able to offer their functionality globally via a single instance, we require
all core services to implement the singleton pattern. Note that this will also hold for future
core services to be added to the tool framework for terms of consistency. A description of the
singleton pattern can be found later on in Section 4.1.6. The two core services we provide are
the XMLParser and the DataStorage which are described in the following paragraphs.

XMLParser As our tool accepts input as .apk file, we first need to unzip it, after unzipping
we get the XML files but all these files are not in human readable form. They need to be parsed.
They are present in BXML (Binary Extensible Markup Language), which is most popularly
used format in parsing XML documents. The best feature of BXML of its wide use is Random
Access and iterations. So for our analysis, we need to parse the BXML files in to standard XML
format, for that we have developed A3XML Parser which parses several BXML format files
present in to standard XML formats.

A3XML Parser uses XML Pull Parser to reverse the parsing scenario. XML Pull
Parser is an interface which provides an API to transform XML files into human readable
standard format. The output of this parser will then be used to extract permissions and other
string constants from the XML files.

A3XML Parser is used at two scenes, one in the beginning and other time during the
process. It basically gives us six information in separate method calls, they are described below
one by one .

1. getRequiredPermissions(): This method will return a map containing com-
ponents and the permissions associated with it from Manifest file.This method will
be called at Enhancer component by Analyzer together with other methods except
getAppName() and getManifestInformation().

2. getUsesPermission(): This method will return a list containing all the permissions
defined in the manifest file under <uses-permission> tag.

3. getIntentFilters(): There are some intent filters associated with activities, this
function will return the mapping of the permissions with specific intent filters in activities
from manifest file.

36

4 REFINED ARCHITECTURE 4.1 Overall Framework

Figure 16: A3XMLParser Workflow

4. getFingerprint(): This function is be used in the very beginning of the analysis
in COMPARISON mode. After the User finishes giving an input .apk file to the
Client, this function will be call to check authenticity of the file. This function will
return the fingerprints, version name and version code. These information will then
be passed into AppIdentifier associate with the App name (got from the function
getAppName()) to compare the .apk file and the previous analysis result. The
fingerprints details are present in META-INF folder, while version name and version
code are in manifest file.

5. getAppName():This function will return the application name mentioned in the XML
file, which we can say the actual name of the application as string. This will be derived
from strings.xml file.

6. getContentProviderURIs(): This function will return a mapping between con-
tent providers and the respected URIs, whenever temporary permissions are assigned in
the application.

Apart from these, A3XML Parser will unzip the .apk file into an accessible folder,
which will then be carried out in further processing. Basic work flow is shown in Figure 16 and
the class diagram is shown in Figure 17.

In the Target Level Agreement a warning was specified that should be provided in the case,
that external libraries are used and it should also output the names of those. Actually, in contrast
to our assumptions the libraries are not detectable by reading the .xml files. Because of that
this warning will not be supported. All components are able to handle classes and methods of
unknown sources like external libraries, but of course these classes and methods will not be
analyzed. On the other hand they will not prohibit our tool from working.

37

4.1 Overall Framework 4 REFINED ARCHITECTURE

Class Diagram XMLParser 2015/07/31 powered by Astah

 pkg

+ getInstance() : XMLParser
- A3XMLParser()

- instance : A3XMLParser

A3XMLParser

<<interface>>

+ getAppName() : String
+ getFingerprint() : String
+ getManifestInformation() : ManifestInfo
+ getContentProviderURIs() : Map<String,List<String>>
+ getIntentFilters() : Map<String,List<String>>
+ getUsesPermissions() : List<String>
+ getRequiredPermissions() : Map<String,List<String>>

XMLParser

Figure 17: A3XMLParser Class Diagram

Class Diagram DataStorage 2015/07/31 powered by Astah

 pkg

+ getInstance() : DataStorage
- A3DataStorage()

- database : HashMap<HashSet<String>,List<String>>
- instance : A3DataStorage

A3DataStorage

+ getMaxAPILevel() : int
+ getAllPermissions() : List<String>
+ mapContentProviderURI(uri : String) : List<String>
+ mapImplicitIntent(actionName : String) : List<String>
+ mapAPICall(class : String, method : String) : List<String>

<<interface>>
DataStorage

Figure 18: A3DataStorage Class Diagram

38

4 REFINED ARCHITECTURE 4.1 Overall Framework

DataStorage The A3DataStorage (see Figure 18) implements the DataStorage in-
terface and the singleton pattern pattern. By that, it implements the five methods of the
interface:

1. mapAPICall(...): This method maps a method call to a list of permissions. The
method is referenced by the method name (parameter method) and the class the method
belongs to (parameter class).

2. mapImplicitIntent(...): An implicit intent which is calling a Android system
App can be mapped to a list of permissions by this method. The intent is recognized by
its action name.

3. mapContentProviderURI(...): This will map a list of permissions to a URI
which is used to access a content provider of the Android system. As input the URI itself
is required.

4. getAllPermissions(): This method will simply return a list of all permissions
that are provided by Android.

5. getMaxAPILevel(): This method will return the API level that is supported by the
DataStorage. In case of the A3DataStorage that will be delivered with the tool
the return value will be 22.

These five methods describe the whole functionality of any DataStorage.

The A3DataStorage holds all information in a hashmap. At the moment an analysis is
started this hashmap is filled with key-value pairs. In this case this will be hashsets of Strings
as keys and lists of Strings as values. The hashsets reference the methods and the lists define
the permissions required by the referenced methods.

To fill the A3DataStorage some textfiles containing the required information will be
read. These textfiles will be generated for Android API Level 22 and be delivered with the tool.
In order to change the supported API Level these textfiles have to be replaced. For the creation
of the files the tool PScout9 was used. It can be reused to generate the same textfiles for another
API Level. The interface also provides the possibility to exchange the whole DataStorage.

4.1.4 Enhancer

The Enhacer class will prepare the raw input for any class implementing the GraphGen-
erator interface. It will use Soot to gather information about the source code. On the
other hand it will use an implementation of the interfaces XMLParser and DataStorage
to get information about the uses of permissions in the provided .apk file. As output the
Enhancer will create an EnhancedInput object. If an aggregation analysis will be run

9Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang and David Lie. PScout: Analyzing the Android Permission
Specification. In the Proceedings of the 19th ACM Conference on Computer and Communications Security
(CCS 2012). October 2012.

39

4.1 Overall Framework 4 REFINED ARCHITECTURE

the Enhancer only forwards the previously generated results. This happens by calling the
collectResults(...) function. In this case the output will be a ResultInput object
instead an EnhancedInput object.

Such an object has a tree structure reflecting the structure of the analyzed App. Every
EnhancedInput object contains an arbitrary number of Element nodes connected by
edges hierarchically from the root to the leafs. The complete data structure is described in
Section 4.1.2, but here is a brief summary: The root node always is an Element object of the
inheriting App class. Every root node will have at least one Component element as child. But
it can have more Component or Class nodes as children. Every Component or Class
node in turn can have an arbitrary number of Method nodes as children. Again these nodes
can have some Statement nodes as children.

The structure of the Enhancer is shown in the class diagram in Figure 19. The sequence
diagram (see Figure 20) shows a possible execution scenario for the Enhancer. Generating
the EnhancedInput starts with an instantiation of the LayerLinker class. The Layer-
Linker will immediately instantiate an App and a PermissionMapper object. The App
object refers to the analyzed App and contains the App’s name. Therefore, the name of the
App will be requested. The primary task of the PermissionMapper is to map permissions
to all the elements contained in an EnhancedInput object. In order to do so, it will get a
list of all permissions available on the Android system and form a map which maps Strings
(permission names) to Permission objects. One object for each item in the list.

Then the first permissions can be mapped to the App object by requesting a list of permis-
sions that contains the permissions which are defined in the ’uses’ tags of the analyzed App’s
manifest. For example according to the following code snippet this list would contain the
android.permission.CAMERA and the android.permission.INTERNET permissions:

<uses−p e r m i s s i o n a n d r o i d : name=" a n d r o i d . p e r m i s s i o n .CAMERA" / >
<uses−p e r m i s s i o n a n d r o i d : name=" a n d r o i d . p e r m i s s i o n . INTERNET" / >

< a p p l i c a t i o n . . . >
< p r o v i d e r a n d r o i d : name=" T e s t P r o v i d e r "

a n d r o i d : p e r m i s s i o n =" a n d r o i d . p e r m i s s i o n .CAMERA"
</ p r o v i d e r >
. . .

The PermissionMapper needs more information from the Apps .xml files. It requests a
map which maps permissions to Android components. According to the code snippet above
this map would map the android.permission.CAMERA to the Content Provider TestProvider.
Another map has to be requested by the PermissionMapper. This map is assigning a list
of URIs to content provider components. All described requests will be responded by a class
implementing the XMLParser interface. In the class diagram this is the A3XMLParser class
(see Section 4.1.3).

But since the PermissionMapper is not only mapping permissions to Elements of
App and Component type, it will need more information. To receive that information

40

4 REFINED ARCHITECTURE 4.1 Overall Framework

Class Diagram Enhancer 2015/07/31 powered by Astah

 pkg

+ getMaxAPILevel() : int
+ getAllPermissions() : List<String>
+ mapContentProviderURI(uri : String) : List<String>
+ mapImplicitIntent(actionName : String) : List<String>
+ mapAPICall(class : String, method : String) : List<String>

<<interface>>
DataStorage

+ getInstance() : DataStorage
- A3DataStorage()

- database : HashMap<HashSet<String>,List<String>>
- instance : A3DataStorage

A3DataStorage

+ getInstance() : XMLParser
- A3XMLParser()

- instance : A3XMLParser

A3XMLParser

+ getAppName() : String
+ getFingerprint() : String
+ getManifestInformation() : ManifestInfo
+ getContentProviderURIs() : Map<String,List<String>>
+ getIntentFilters() : Map<String,List<String>>
+ getUsesPermissions() : List<String>
+ getRequiredPermissions() : Map<String,List<String>>

<<interface>>
XMLParser

+ collectResults(results : List<AnalysisResult>) : ResultInput
+ enhance(apk : File) : EnhancedInput

Enhancer

+ getEnhancedInput() : EnhancedInput
+ addComponent(element : Component) : void
+ addClass(element : Class) : void
+ addMethod(element : Method) : void
+ addStatement(element : Statement) : void
+ LayerLinker(apk : File)

- ei : EnhancedInput

LayerLinker

+ mapPermissionsToApp(element : App) : Collection<Permission>
+ mapPermissionsToStatement(element : Statement) : Collection<Permission>
+ mapPermissionsToComponent(element : Component) : Collection<Permission>
+ PermissionMapper()

- uris : Map<String,List<String>>
- allPermissions : Map<String,Permission>
- requiresPermissions : Map<String,List<String>>

PermissionMapper

LinkTransformer

+ transform(phaseName : String, options : Map<String,String>) : void
+ transform(phaseName : String) : void
+ transform() : void
internalTransform(phaseName : String, options : Map<String,String>) : void

SceneTransformer

+ manifestInfo(versionCode : String, versionName : String) : void

- versionName : String
- versionCode : String

ManifestInfo

uses

1

uses

uses

uses

1

uses

Figure 19: Enhancer Class Diagram

41

4.1 Overall Framework 4 REFINED ARCHITECTURE

Sequence Diagram Enhancer 2015/07/31 powered by Astah

Sequence Diagram Enhancersd

 : A3DataStorage : A3AnalysisProcedure : A3XMLParser

 : PermissionMapper

 : LayerLinker

 : Enhancer

1: enhance(apk:File) : EnhancedInput <<create>>
1.1: LayerLinker(apk:File)

<<create>>
1.1.2: PermissionMapper()

1.1.2.2: getRequiredPermissions() : Map<String,List<String>>

1.2: getEnhancedInput() : EnhancedInput

1.1.1: getAppName() : String

1.1.3: mapPermissionsToApp(element:App) : Collection<Permission>
1.1.3.1: getUsesPermissions() : List<String>

1.1.2.1: getAllPermissions() : List<String>

Figure 20: Enhancer Sequence Diagram

a class implementing the DataStorage interface will come into play. Such a class is
the A3DataStorage (see Section 4.1.3). It provides three methods to map permissions
to all kinds of Statements: mapAPICall(...), mapImplicitIntent(...) and
mapContentProviderURI(...). One of these methods will always be called if the
PermissionMapper wants to map a set of permissions to a Statement, because there
are three types of statements that can require a permission before execution:

1. Android API calls

2. Intent definitions referring to Android system Apps

3. Accesses to content providers of the Android system

In order to fill the EnhancedInput the LinkTransformer is needed. It is overwriting
a Soot class. By that the LinkTransformerwill call the methods addStatement(...),
addMethod(...), addClass(...) and addComponent(...) when Soot is running
with the .apk file of the targeted App as input. This is described in more detail in Section 3.
One exemplary execution of these methods is shown in another sequence diagram (see Fig-
ure 21). Everything happening there would happen directly before Step 1.2 in the first sequence
diagram. Step 1 shows, how a new Component is added by the LinkTransformer. Part
of it is Step 1.1 to get the permissions which are required by that component. In Step 2 a new
Method is added to the tree. Step 3 and Step 4 show, how to add a Statement to the tree. If
the statement belongs to an Android API Call, the A3DataStorage will be called to map
the involved permissions (see Step 3.1.1). The same happens if it is an implicit intent which

42

4 REFINED ARCHITECTURE 4.1 Overall Framework

Sequence Diagram Link Transformer 2015/07/31 powered by Astah

Sequence Diagram Link Transformersd

 : LayerLinker : PermissionMapper : A3DataStorage : LinkTransformer

1: addComponent(element:Component) : void

1.1: mapPermissionsToComponent(element:Component) : Collection<Permission>

2: addMethod(element:Method) : void

3: addStatement(element:Statement) : void

3.1: mapPermissionsToStatement(element:Statement) : Collection<Permission>

4: addStatement(element:Statement) : void

4.1: mapPermissionsToStatement(element:Statement) : Collection<Permission>

3.1.1: mapAPICall(class:String, method:String) : List<String>

4.1.1: mapImplicitIntent(actionName:String) : List<String>

Figure 21: Sequence Diagram Showing Executions of the Methods addStatement(...),
addMethod(...), addClass(...) and addComponent(...)

43

4.1 Overall Framework 4 REFINED ARCHITECTURE

Figure 22: Summary of the Enhancer’s Function in Form of a Sketch

calls a system App (see Step 4.1.1) or if it accesses a system content provider. To any other
kind of statement no permissions are assigned.

To summarize the functionality of the Enhancer we can say, that it generates an En-
hancedInput object that contains the structure of the source code down to any statement
and has permissions assigned to almost all the Elements representing that structure as shown
in Figure 22. This will not happen in case of an aggregation analysis. Then the Enhancer
will only forward the previously collected results.

4.1.5 Usage Protocols

Next we want to provide some usage protocols for the tool framework in form of state charts.
They will describe how the Client has to interact with the framework as well as how the
Client can gather information from the AnalysisResult.

The state chart in Figure 23 models the steps the Client has to do to perform an analysis.
We assume the Client has already collected all required information for analysis configu-
ration for a certain analysis. Then the Client can create an AnalysisFactory for the
chosen analysis by providing the collected configuration. After calling the createAnal-
ysis() method of the AnalysisFactory, the Client receives a list of Analysis
objects. This list will be passed to the AnalysisRunner via analyze(...) after the
Client created an instance of the AnalysisRunner. Finally, the AnalysisRunner
returns the AnalysisResult to the Client.

44

4 REFINED ARCHITECTURE 4.1 Overall Framework

Client Framework Usage 2015/07/31 powered by Astah

Client Framework Usagestm

AnalysisFactory created Analysis list received

AnalysisRunner createdAnalysisResult received

Call createAnalysis()

Create AnalysisRunner

Call analyze(...)

Analysis configuration collected
Create AnalysisFactory

Figure 23: State Chart of the Framework Usage for the Client

Client Result Handling 2015/07/31 powered by Astah

Client Result Handlingstm

AnalysisResult received

Messages received

Filters received

DetailLevel received

Filters selectedDetailLevel selected

Graphical result received Call getGraphicalResult(..) [Show graphical result]

Textual result received
Call getTextualResult(...) [Show textual result]

Information displayed

[Show result]

Call getMessages() [Show Messages]

Display Messages

Call getFilters()

Call getDetailLevels()

Select DetailLevel Select Filters

Figure 24: State Chart for Retrieving Result Representations from the AnalysisResult

After receiving the AnalysisResult, the Client likely wants to gather the contained
information to display it to the user. This processing is described in Figure 24. If the Client
wants to get the Messages inside the AnalysisResult, it has only to call the getMes-
sages() method to get access to the Messages. The information contained in a Message
can be extracted via getter methods and then displayed to the user. To get a result representation
from the AnalysisResult is more complex since results may be very unique. At first the
Client has to get the DetailLevels and the filters the AnalysisResult provides via
the methods getDetailLevels() and getFilters(). Afterward the Client has to
select a certain DetailLevel out of the provided ones and a subset of the provided filters.
Depending on the kind of result representation (graphical or textual) the Client can now call
getGraphicalResult(...) or respectively getTextualResult(...) while pass-
ing the selections as parameters to the result. The returned String will contain the information
in the Graphviz DOT language or in the HTML5 language (as specified in Section 4.1.2) which
can both be easily parsed and displayed to the user. After the Client processed the gathered
information it is of course possible to request new information from the AnalysisResult.

45

4.1 Overall Framework 4 REFINED ARCHITECTURE

4.1.6 Software Design Patterns

For the tool framework we want to provide features that reduce the workload to extend/adapt
our tool to new tasks and environments. Parts of those features were already described above,
using interfaces for the core services (Sec. 4.1.3), separating the analysis logic (Sec. 4.1.1)
from the user interface and using external standard languages for information exchange to the
UI (Sec. 4.1.2).

To perfect this first approach, we included several software design patterns10 into the
framework. In the following list all used patterns are named including a description what they
are for and where they are used.

• The composite pattern is a structural pattern and is used when a part-whole hierarchy
has to be modeled. The advantage of this pattern is that a functional class that this
hierarchical structure uses can treat each element equally for all common properties. The
core of this pattern is the abstract class Component which contains the common part
for all objects in an hierarchy instance.

We used a slightly adapted version of the composite pattern in the EnhancedInput
where the Element class is the Component.

• The strategy pattern is a behavioral pattern and is used when it is necessary to select an
algorithm’s behavior at runtime. To do so, the algorithm’s logic that should be variable
is outsourced to an interface. Concrete classes will then implement that interface with
different behavior. The fixed logic of the algorithm is contained in the class Context
that owns an instance of the interface Strategy.

We used the strategy pattern two times inside the Analysis. For the general part
the AnalysisProcedure is the Strategy and the Analysis is the Context.
Additionally the specific A3AnalysisProcedure again is a Context with the two
Strategy interfaces GraphGenerator and Analyzer.

• The factory method pattern is a creational pattern and can be used when the creation of a
concrete object should be decoupled from the creation process. When this pattern is used
in a program, the program can be extended by new kinds of concrete objects without the
need to change the creation process. The pattern consist of the interface Factory that
has a method for creating concrete implementations of the interface Product.

We used the factory method pattern in the interface AnalysisFactory. Its method
does not return our version of a Product directly. This is because we had to encapsulate
the Product which is the interface AnalysisProcedure into the class Analysis
for the usage of the strategy pattern.

• The singleton pattern is also a creational pattern and can be used when only a single
instance of a certain class is allowed during runtime. The singleton pattern realizes this

10As introduced by Gamma, Helm, Johnson and Vlissides in Design Patterns - Elements of Reusable Object-
Oriented Software, Prentice Hall

46

4 REFINED ARCHITECTURE 4.2 AnalysisProcedure for Level 1

restriction. Therefore, a singleton class has a private constructor and a static method
instance() to offer the instance to other classes.

In our document we already mentioned in Section 4.1.3 that our core services XML-
Parser and DataStorage will implement this pattern to be publicly available for all
analysis classes as well as for the Client.

4.2 AnalysisProcedure for Level 1

The structure of the A3AnalysisProcedure for Level 1 is shown in the class diagram in
Figure 25. Primarily it is an implementation of the AnalysisProcedure interface and
consists out of an aggregation of three classes:

• Enhancer (Same class for any level of analysis.)

• GraphGeneratorLvl1 (Implementing the GraphGenerator interface.)

• AnalyzerLvl1 (Implementing the Analyzer interface.)

The Enhancer class and its function is described and explained in Section 4.1.4. The last two
level specific classes (GraphGeneratorLvl1, AnalyzerLvl1) are briefly introduced in
the following. Their function is to realize the Level 1 analysis. Therefore, the GraphGen-
eratorLvl1 is connecting elements of the EnhancedInput, created by the Enhancer,
according to the explicit intents used in the source code of the analyzed App. For instance,
one edge for each explicit intent is added between the definition of the intent and the targeted
component. After adding all these edges the AnalyzerLvl1 will start the analysis. In case
of a Level 1 analysis this means, that it will assign a group to any permission involved in the
analyzed App. For example it will automatically assign the REQUIRED group to a permission,
if there exists a ’uses’ definition for this permission in the manifest and if there exists a use for
this permission in the manifest or source code. All assignments to groups will be collected in
an AnalysisResultLvl1 object as result.

The next subsection will introduce the AnalysisFactory for this level of analysis.
The two subsections after the next one will explain the structure and the function of the
GraphGeneratorLvl1 and the AnalyzerLvl1 in more detail. In Subsection 4.2.4 the
structure of the AnalysisResultLvl1 is explained.

4.2.1 AnalysisFactoryLvl1

Figure 26 shows a class diagram of the interface AnalysisFactory, namely the Analy-
sisFactoryLvl1. The first parameter of the constructor belongs to the .apk file of App
that will be analyzed, followed by a second parameter containing the previous result. The
second parameter will be null as long as SUMMARY mode is selected.

47

4.2 AnalysisProcedure for Level 1 4 REFINED ARCHITECTURE

Class Diagram Level1 2015/07/31 powered by Astah

 pkg

+ GraphGeneratorLvl1()

GraphGeneratorLvl1

+ generateGraph(in : Input, apk : File) : AnalysisGraph

<<interface>>
GraphGenerator

+ analyzeExplicitIntents() : void
+ IntentAnalyzerLvl1(ei : EnhancedInput)

IntentAnalyzerLvl1

+ getGraph() : AnalysisGraph
+ link(stm : Statement) : void
+ NodeLinkerLvl1(ei : EnhancedInput) : void

- resultGraph : AnalysisGraph

NodeLinkerLvl1

+ collectResults(results : List<AnalysisResult>) : ResultInput
+ enhance(apk : File) : EnhancedInput

Enhancer

+ AnalyzerLvl1()

AnalyzerLvl1

- generateAnalysisResult() : AnalysisResultLvl1
- fillUpPermissions() : AnalysisGraph
+ compare(graph : AnalysisGraph) : AnalysisResultLvl1
+ ManifestPermissionComparerLvl1()

- maybeMore : List<Element>
- graph : AnalysisGraph

ManifestPermissionComparerLvl1

+ analyze(ag : AnalysisGraph, prevRes : AnalysisResult) : AnalysisResult

<<interface>>
Analyzer

+ compare(prevRes : AnalysisResult) : void
+ setMethods(type : ResultTypeLvl1, result : ResultTreeLvl1) : void
+ setClasses(type : ResultTypeLvl1, result : ResultTreeLvl1) : void
+ setComponents(type : ResultTypeLvl1, result : ResultTreeLvl1) : void
+ setApp(type : ResultTypeLvl1, result : ResultLeafLvl1) : void
+ addMessage(Message : int) : void
+ setResultGraph(result : AnalysisGraph) : void
+ AnalysisResultLvl1()

- comparison : boolean
- resultGraph : AnalysisGraph
- messages : Collection<Message>
- methods : ResultTreeLvl1[5]
- classes : ResultTreeLvl1[5]
- components : ResultTreeLvl1[5]
- app : ResultLeafLvl1[5]

AnalysisResultLvl1

1

produces

+ A3AnalysisProcedure(gen : GraphGenerator, an : Analyzer)

A3AnalysisProcedure

+ getAnalysisGraph() : AnalysisGraph
+ getMessages() : Collection<Message>
+ addMessage(msg : Message) : void
+ getFilters() : List<String>
+ getDetailLevels() : List<DetailLevel>
+ getTextualResult(vl : DetailLevel, filters : List<String>) : String
+ getGraphicalResult(vl : DetailLevel, filters : List<String>) : String

AnalysisResult

+ MAYBE_MISSING : EnumerationElement
+ MISSING : EnumerationElement
+ UNUSED : EnumerationElement
+ MAYBE_REQUIRED : EnumerationElement
+ REQUIRED : EnumerationElement

<<enum>>
ResultTypeLvl1

uses

1

1

1

+ getMaxAPILevel() : int
+ getAllPermissions() : List<String>
+ mapContentProviderURI(uri : String) : List<String>
+ mapImplicitIntent(actionName : String) : List<String>
+ mapAPICall(class : String, method : String) : List<String>

<<interface>>
DataStorage

+ getInstance() : DataStorage
- A3DataStorage()

- database : HashMap<HashSet<String>,List<String>>
- instance : A3DataStorage

A3DataStorage

uses

+ getPermissions() : List<String>
+ getName() : String
+ ResultLeafLvl1(name : String, permissions : List<String>) : void

- permissions : List<String>
- name : String

ResultLeafLvl1

ResultTreeLvl1

uses

0..* has

+ doInitialAnalysis(apkFile : File, prevRes : AnalysisResult) : AnalysisResult
+ doAggregationAnalysis(subResList : List<AnalysisResult>, prevRes : AnalysisResult) : AnalysisResult

<<interface>>
AnalysisProcedure

uses

Figure 25: Level 1 Class Diagram

48

4 REFINED ARCHITECTURE 4.2 AnalysisProcedure for Level 1

Class Diagram AnalysisFactory 2015/07/31 powered by Astah

 pkg

+ createAnalysis() : List<Analysis>

<<interface>>
AnalysisFactory

+ createAnalysis() : List<Analysis>
+ AnalysisFactoryLvl1(apk : File, prevRes : AnalysisResultLvl1)

AnalysisFactoryLvl1

Creates:
- GraphGeneratorLvl1
- AnalyzerLvl1
- A3AnalysisProcedure
- Analysis

Figure 26: AnalysisFactoryLvl1 Class Diagram

The abstract method createAnalysis(...) is implemented by the AnalysisFac-
toryLvl1. This method will create a list of Analysis objects. Each object will know both
parameters provided in the constructor of the factory object. In case of Level 1 the list will only
contain one item, because only one analysis on a single App is created.

While executing the createAnalysis() method a GraphGeneratorLvl1 and an
AnalyzerLvl1 as well as an A3AnalysisProcedure object are created. When creat-
ing the A3AnalysisProcedure object it gets access to the GraphGenerator and the
Analyzer, because these object are given to the A3AnalysisProcedure as parameters.
Since the A3AnalysisProcedure implements the AnalysisProcedure interface, the
factory can now create an Analysis object and put this into the list that will be returned. The
relationship between the Analysis, AnalysisProcedure and the AnalysisFactory
is described in Section 4.1.1.

4.2.2 GraphGeneratorLvl1

The GraphGeneratorLvl1 is an implementation of the GraphGenerator interface. By
that it implements the generateGraph(...) function. This function will take an Input
object as input and generates an object of type AnalysisGraph as output. In case of Level 1
the Input object will always be an object of type EnhancedInput, because the Level 1
analysis does not rely on other analyses that have to be executed before. Level 2b for example
will rely on one or more Level 1 analyses (see Section 4.4).

One execution of the generateGraph(...) function is reflected in a sequence diagram
shown in Figure 27. Once the generateGraph(...) function is executed an object of
type IntentAnalyzerLvl1 (IA) will be generated. The instantiation of this object directly
leads to another instantiation of class NodeLinkerLvl1 (NL). After the instantiation of the
NL the analysis graph is created, namely by instantiating an object of type AnalysisGraph.
Primarily the IA object has one function: analyzeExplicitIntents(). This function

49

4.2 AnalysisProcedure for Level 1 4 REFINED ARCHITECTURE

Level 1 GraphGenerator 2015/07/31 powered by Astah

Level 1 GraphGeneratorsd

resultGraph : AnalysisGraph

 : NodeLinkerLvl1

 : IntentAnalyzerLvl1

 : GraphGeneratorLvl1

<<create>>
1.1: IntentAnalyzerLvl1(ei:EnhancedInput)

 : A3AnalysisProcedure

1: generateGraph(in:Input, apk:File) : AnalysisGraph

1.2: analyzeExplicitIntents() : void

1.2.1: link(stm:Statement) : void

<<create>>
3: AnalysisGraph(inp:EnhancedInput)

1.2.1.1: addTranstion(t:Transition) : void

loop [More elements]

1.3: getGraph() : AnalysisGraph

resultGraph

resultGraph

1.2.1.2: addTranstion(t:Transition) : void
1.2.1.3: addTranstion(t:Transition) : void

<<create>>
2: NodeLinkerLvl1(ei:EnhancedInput) : void

Figure 27: GraphGeneratorLvl1 Sequence Diagram

includes a loop, which is iterating over Elements stored in the EnhancedInput object.
Once an Element is visited, which is a Statement, more precisely a definition of an explicit
intent, the NL will be called to link that Statement to the targeted Component. This
will happen by calling the link(...) function of the NL. Hence the NL will add three
transitions to the analysis graph via addTransition(...) (see Figure 27). One from
the Statement itself to the targeted Component. Another one from the Method, the
Statement belongs to, to the targeted Component. And a last one from the Component,
this Method is part of, to the targeted Component.

The whole execution of the loop is visualized by the statechart in Figure 28. The first
reachable state is the Searching state. This state stands for the head of the loop and will
always be reached before executing the loop’s body. Once all Elements have been visited
the endstate is reached and the execution of the loop ends. But as long as there are Elements
which have not been visited yet the next state (Element found) will be reached. If the
visited Element is not of type Statement the next Elementwill be visited. This means we
return to the Searching state. If it is of type Statement we continue by entering the state
Statement found. The same happens depending on the fact, whether the Statement
is an explicit intent definition or not. Once reaching the state Explicit intent found,
the intent definition itself will be checked. If it is valid according to the assumptions and
limitations of the Target Level Agreement, the next state (Target found) will be reached.
For example it will be checked whether the intent’s target exists. Otherwise we will return to

50

4 REFINED ARCHITECTURE 4.2 AnalysisProcedure for Level 1

Analyze explicit intents 2015/07/31 powered by Astah

Analyze explicit intentsstm

Explicit intent found

Statement found

Searching

[Element type = Statement]

[else]

[Statement = Explicit intent definition]

[else]

Target found

Edges added

Element found

[else]

[no more elements]

[else]

[Illegal intent]

Figure 28: State Chart Showing the Loop while Analyzing Explicit Intents

51

4.2 AnalysisProcedure for Level 1 4 REFINED ARCHITECTURE

the Searching state and the tool will provide a warning, that an illegal intent has been found.
After reaching the Target found state, the NL will be called to add the required edges and
we return to the Searching state.

After the execution of the loop the GraphGeneratorLvl1 gets the generated Anal-
ysisGraph object from the NL and returns it to the A3AnalysisProcedure. The
A3AnalysisProcedure will start the next step described in the following subsection.

4.2.3 AnalyzerLvl1

The Analyzer interface serves as a blueprint for the AnalyzerLvl1. By that, the An-
alyzerLvl1 implements the method analyze(...). This method will be called after
the GraphGeneratorLvl1 has finished creating the AnalysisGraph. This graph is
the only input to the analyze(...) method, if SUMMARY mode is chosen. In COM-
PARISON mode a second input has to be provided, namely the previous result in form of
an object of type AnalysisResult. Once the analyze method is executed, a Mani-
festPermissionComparerLvl1 object is constructed. Objects of this class are used
to compare the permissions declared in the Android manifest with permissions required by
Android components and permissions needed by statements in the source code. All information
about all involved permissions are already available since the Enhancer finished creating the
EnhancedInput (see Section 4.1.4). Every EnhancedInput object contains one App
object. All permissions which are declared in the Android manifest through uses-tags are
already assigned to that object in form of one or more objects of type Permission. Equally,
if a component of an App requires a permission, a Permission object will be assigned to the
Component object representing that component. Same is valid for a statement in the source
code that requires a permission for being executed. But there does not exist any information
about permissions being assigned to methods which do not belong to Android API Calls and
classes which are no Android components, yet.

The sequence diagram in Figure 29 reflects a possible execution of the analyze(...)
method. First the ManifestPermissionComparerLvl1 object is created. Then the
compare(...) method of that object is called. Essentially, it will compute the analysis
result by extending and comparing the provided permission information. For instance, if there
exists a Permission object assigned to a Statement and to the App object then this
permission is a REQUIRED permission.

The first step while computing the analysis result is to instantiate an object of type Anal-
ysisResultLvl1. For any Level 1 analysis the result will always be represented by such an
object. The second step is to fill up each node in the AnalysisGraph with the associated
permissions. For example, assume permission A is assigned to a statement. This statement is
part of a method. But permission A is not assigned to that method. Filling up the graph will as-
sign these missing permission assignments. Therefore the method fillUpPermissions()
is executed. How exactly this method works is reflected in the statechart in Figure 30. The

52

4 REFINED ARCHITECTURE 4.2 AnalysisProcedure for Level 1
L

ev
el

 1
 A

na
ly

ze
r

20
15

/0
7/

31
 p

ow
er

ed
 b

y
A

st
ah

Le
ve

l 1
 A

na
ly

ze
r

sd

 :
A

3D
at

aS
to

ra
ge

an
aR

es
ul

t :

A
na

ly
si

sR
es

ul
tL

vl
1

 :
M

an
ife

st
P

er
m

is
si

on
C

om
pa

re
rL

vl
1

 :
A

3A
na

ly
si

sP
ro

ce
du

re
an

 :
A

na
ly

ze
rL

vl
1

1:
 a

na
ly

ze
(a

g:
A

na
ly

si
sG

ra
ph

, p
re

vR
es

:A
na

ly
si

sR
es

ul
t)

 :
A

na
ly

si
sR

es
ul

t

an
aR

es
ul

t

<
<

cr
ea

te
>

>
1.

1:
 M

an
ife

st
P

er
m

is
si

on
C

om
pa

re
rL

vl
1(

)

1.
2:

 c
om

pa
re

(g
ra

ph
:A

na
ly

si
sG

ra
ph

)
: A

na
ly

si
sR

es
ul

tL
vl

1

an
aR

es
ul

t

1.
2.

2:
 fi

llU
pP

er
m

is
si

on
s(

)
: A

na
ly

si
sG

ra
ph

fil
le

dA
na

ly
si

sG
ra

ph

1.
2.

4:
 g

en
er

at
eA

na
ly

si
sR

es
ul

t(
)

: A
na

ly
si

sR
es

ul
tL

vl
1

1.
2.

3:
 s

et
R

es
ul

tG
ra

ph
(r

es
ul

t:A
na

ly
si

sG
ra

ph
)

: v
oi

d

1.
2.

4.
2:

 s
et

A
pp

(t
yp

e:
R

es
ul

tT
yp

eL
vl

1,
 r

es
ul

t:R
es

ul
tL

ea
fL

vl
1)

 :
vo

id

1.
2.

4.
3:

 s
et

C
la

ss
es

(t
yp

e:
R

es
ul

tT
yp

eL
vl

1,
 r

es
ul

t:R
es

ul
tT

re
eL

vl
1)

 :
vo

id

1.
2.

4.
4:

 s
et

C
om

po
ne

nt
s(

ty
pe

:R
es

ul
tT

yp
eL

vl
1,

 r
es

ul
t:R

es
ul

tT
re

eL
vl

1)
 :

vo
id

1.
2.

4.
5:

 s
et

M
et

ho
ds

(t
yp

e:
R

es
ul

tT
yp

eL
vl

1,
 r

es
ul

t:R
es

ul
tT

re
eL

vl
1)

 :
vo

id

<
<

cr
ea

te
>

>
1.

2.
1:

 A
na

ly
si

sR
es

ul
tL

vl
1(

)

1.
2.

4.
1:

 g
et

A
llP

er
m

is
si

on
s(

)
: L

is
t<

S
tr

in
g>

Fi
gu

re
29

:A
n
a
l
y
z
e
r
L
v
l
1

Se
qu

en
ce

D
ia

gr
am

53

4.2 AnalysisProcedure for Level 1 4 REFINED ARCHITECTURE

Fill permission tree 2015/07/31 powered by Astah

Fill permission treestm

Searching

Method found

Searching
Permissions

Statement found

Permission found

[No more children]

[else]

[else]

Class found

[else]

Valid statement found

[else]

[Permission missing]

[No permission]

[else]

[No more children]

[No more classes]

Figure 30: State Chart Reflecting the Method fillUpPermissions()

54

4 REFINED ARCHITECTURE 4.2 AnalysisProcedure for Level 1

first reachable state is called Searching. The method iterates over all classes including
components. In other words, a loop is running through all direct children of the App element.
Once a new class is visited, the Class found state is reached. The same way the method
iterates over all methods of that class and reach the state Method found. Then another two
loops will iterate over all permissions assigned to any child of the visited method. Overall this
makes four loops nested in each other, so that each permission assigned to any statement in
any method of any class will be visited. The state Searching Permissions symbolizes
the iteration over all permissions in all statements that are part of the currently visited method.
When finding a Statement, the state Statement found is reached. If this Statement
has no permissions assigned, the method returns to the previous state and if this Statement
is an invalid statement, that Statement is marked by adding the associated Element object
and all ancestors except the App node to the maybeMore list of the ManifestPermis-
sionComparerLvl1 and warning is provided. A statement is invalid if it fulfills one of the
following criteria:

• It is an implicit intent and cannot be mapped by the DataStorage to a system App.

• It is an explicit intent and the targeted component cannot be resolved.

• It is a method call that does not refer to a Android API call.

• It is requesting a URI of a content provider, that

– cannot be mapped to any URI in the manifest or the Android system.

– can be mapped to content provider, which is granting a temporary permission for
this URI.

• It is a statement which receives data from another component. In this special case the
tool will also suggest a Level 2b analysis (see Section 4.4)
(Example: getIntent().getStringExtra("data"))

In any other case the next reached state is Valid statement found. This means, that a
statement has been found which has permissions assigned to it. In case of an explicit intent this
will be the permissions required by the targeted component in the manifest. If this permissions
are already assigned to the currently visited method, the method returns to the Searching
Permissions state. Otherwise a permission is found that should be assigned to the method.
The state Permission found is reached then and the permission is be assigned to the
currently visited method. If that permission is not assigned to the currently visited class too, it
will be assigned.
After one run through the whole graph the execution of fillUpPermissions() will end.
All Elements are now in relation to any permission used by them.

After explaining the fillUpPermissions() method in detail, the description of the
sequence diagram (see Figure 29) will be continued now. The third step (see Step 1.2.3)
will set this filled graph as result graph in the AnalysisResultLvl1 object by using the
setResultGraph(...) method. This again can be seen in the sequence diagram

55

4.2 AnalysisProcedure for Level 1 4 REFINED ARCHITECTURE

Table 1: Decision table (Generating analysis result)
Element type Group assigned Permission is Permission is Element is

assigned to assigned to included in
current any direct child the maybeMore
element of this element list

App REQUIRED X X
MAYBE_REQUIRED X 7 X
UNUSED X 7 7

MISSING 7 X
MAYBE_MISSING 7 7 X

Component REQUIRED X 0
or class MAYBE_REQUIRED X 7 X

UNUSED X 7 7

MISSING 7 X
MAYBE_MISSING 7 7 X

Method REQUIRED X 0
MAYBE_REQUIRED X 7 X
UNUSED X 7 7

MISSING 7 X
MAYBE_MISSING 7 7 X

The fourth step while computing the analysis result is primarily the execution of the gen-
erateAnalysisResult() method of the ManifestPermissionComparerLvl1.
But before doing that, the ManifestPermissionComparerLvl1 requests a list of all
permissions available in the DataStorage (see 1.2.4.1 in Figure 29). Once the gener-
ateAnalysisResult() method is called, the method iterates over all Elements except
Statements in the AnalysisGraph which was filled up before. Each time an Element
is visited, the method iterates over all available permissions existing in the current Android
API version. Every permission will be assigned to the analysis result if it fulfills all conditions
of one row in the decision table (see Table 1). For example, if a Class element A is visited
and the current permission considered is B, then the following facts will be checked:

• Is permission B assigned to A?

• Is permission B assigned to any direct child of A?

• Is A contained in the maybeMore list, which holds a list of marked elements that might
use more permissions than currently known.

According to the result of these checks the permission will be added appropriately to the
analysis result. After iterating through the whole graph, the maybeMore list will be visited
once more. If this list is not empty, a warning is provided and for each element in it all

56

4 REFINED ARCHITECTURE 4.3 AnalysisProcedure for Level 2a

permissions that are not assigned will be considered as MAYBE_MISSING in the analysis
result.

Finally, after executing all the above described steps, the AnalysisResultLvl1 object
has been instantiated and filled with all the information needed to show and filter the result.
The next section will explain, how the information is stored in this object.

4.2.4 AnalysisResultLvl1

An AnalysisResultLvl1 (see Figur 25) object stores the analysis result. Since the con-
structor has no parameters, the result parts are set after instantiation through the methods se-
tApp, setComponents, setClasses and setMethod. One call of the setApp(...)
method is creating a ResultLeafLvl1 object. This object will be saved in the array app.
The position in the array is defined by the type parameter of type ResultTypeLvl1. One
call of the setComponents(...) method is adding a whole ResultTreeLvl1 object
including several leafs to the array components. Again the position in the array is defined
by the result type. This method has to save a whole tree with depth one because in contrast
to the App element there might exist more than one Component element. Equally, the
setClasses(...) and setMethod(...) methods work. They will assign Result-
TreeLvl1s to the arrays classes and methods.

Once the result is saved in this structure all filters can be applied easily. The unfiltered
result will show all permissions saved in the array app. If the user wants to filter out e.g. the
MISSING permissions the tool simply takes only one item of the array. On the other hand if
the user wants to switch to detail level METHOD the tool can just change the array used to
methods.

In COMPARISON mode the previous result will be available and can be displayed and
filtered in the same way. Hence, the user can compare both results.

Additional warnings are added to the result, if the following permission groups are not empty:
MAYBE_REQUIRED, UNUSED and MAYBE_MISSING. In the case, that the permission
group MISSING is not empty, an error is provided. These warning messages and the error
message will include the number of items in the associated group.

4.3 AnalysisProcedure for Level 2a

This section describes the class structure of the Android App Analysis tool for Level 2a. In
addition to introducing this structure and describing it in detail, some sequence diagrams will
explain how the classes typically will behave when executing a Level 2a analysis.

The important classes our tool uses to do a Level 2a analysis are displayed in Figure 32, 35,
36 and 31. The yellow and blue classes can be found in more detail in Sec. 4.1. In this section
they are only added to the class diagram to visualize the relationship between the Level 2a

57

4.3 AnalysisProcedure for Level 2a 4 REFINED ARCHITECTURE

Figure 31: Class Diagram for the Level2aFactory

specific classes and those of the general framework. Therefore, not all attributes, methods and
associations are displayed in the following figures. Furthermore, abstract methods of interfaces
are not explicitly visualized in all concrete classes implementing the corresponding interface
for better overview.

As explained in section 4.1.1 the A3AnalysisProcedure consists of the three main
components Enhancer, GraphGenereator and Analyzer. Two of them are specific
for each level and are reachable for the procedure via the interfaces GraphGenerator
and Analyzer. Therefore, describing the structure of those two components (Fig. 32 and
35) will be the main part in this section. But before starting with the two components the
AnalysisFactory for Level 2a will be shortly introduced.

4.3.1 AnalysisFactoryLvl2a

Figure 31 shows the concrete class AnalysisFactoryLvl2a which implements the inter-
face AnalysisFactory (see Fig. 12). The constructor gets as parameters the .apk to be
analyzed and for COMPARISON mode in addition a previous result of a level 2a analysis. It
will be an object of type AnalysisResultLvl2a (see Sec. 4.3.4). If SUMMARY mode is
selected, the second parameter will be null.

The AnalysisFactoryLvl2a implements the abstract method createAnalysis()
provided by the interface AnalysisFactory. In this method the AnalysisFacto-

58

4 REFINED ARCHITECTURE 4.3 AnalysisProcedure for Level 2a

ryLvl2a constructs a list of Analysis objects passing the .apk and if available the
previous result automatically to the Analysis object via its constructor. For Level 2a the list
of Analysis objects contains only one element.

The method createAnalysis() creates a GraphGeneratorLvl2a and an Ana-
lyzerLvl2a and then builds an A3AnalysisProcedure passing the GraphGener-
ator and the Analyzer via its constructor to the A3AnalysisProcedure. Since the
A3AnalysisProcedure implements the interface AnalysisProcedure, the factory
can create now an Analysis and pass the A3AnalysisProcedure, the .apk to be ana-
lyzed and if existing the previous result as parameters via the constructor to the just created
Analysis. This Analysis is added to an empty list and that list is then returned. The re-
lationship between the Analysis, AnalysisProcedure and the AnalysisFactory
was described in Section 4.1.1 in detail.

4.3.2 GraphGeneratorLvl2a

The GraphGenerator has two subcomponents, an IntentAnalyzer and a NodeLinker
(see Sec. 2.2). Therefore, the GraphGeneratorLvl2a has the two aggregation associations
to the classes NodeLinkerLvl2a and GraphGeneratorLvl2a. The GraphGener-
atorLvl2a has to create an AnalysisGraph in the method generateGraph(...).
Since the analysis graph for Level 2a needs some additional specific nodes in addition to those
provided in the overall framework (see Fig. 15), a class AnalysisGraphLvl2a which
inherits the class AnalysisGraph is needed(see Fig. 36). The behaviour of the GraphGen-
eratorLvl2a and its corresponding classes can be explained best by looking at a typical
execution shown in the sequence diagram in Figure 33. The A3AnalysisProcedure
will call the method generateGraph(...) passing over the .apk as well as an Input
object which in case of Level 2a is an EnhancedInput (see Fig. 15). The GraphGener-
atorLvl2a then creates an AnalysisGraphLvl2a from that Input and enriches the
graph via calling analyzeExplicitIntents(...) on the IntentAnalyzerLvl2a
and link(...) on the NodeLinkerLvl2a. Already at that stage the Input will be
converted to an AnalysisGraphLvl2a to avoid that the NodeLinkerLvl2a or the In-
tentAnalyzerLvl2a have to do the transformation. This workflow allows it to call the
IntentAnalyzerLvl2a and the NodeLinkerLvl2a in an arbitrary order since none
of them is dependent on the transformation done by one of them but they both work on an
AnalysisGraphLvl2a object.

When calling analyzeExplicitIntents(...) the IntentAnalyzerLvl2a
gets the AnalysisGraphLvl2a which at that point has the EnhancedInput but no
transitions yet. All Statements in the EnhancedInput will be analyzed to find out
whether they are explicit intents and if this is the case, a transition from the Statement
to the corresponding Component will be added to the AnalysisGraphLvl2a. After
adding the Transition the IntentAnalyzerLvl2a calls addTransitionsForEx-
plicitIntent(...) on the NodeLinkerLvl2a. The NodeLinkerLvl2a then has

59

4.3 AnalysisProcedure for Level 2a 4 REFINED ARCHITECTURE

Figure 32: Class Diagram of the GraphGeneratorLvl2a60

4 REFINED ARCHITECTURE 4.3 AnalysisProcedure for Level 2a

Fi
gu

re
33

:S
eq

ue
nc

e
D

ia
gr

am
fo

rt
he
G
r
a
p
h
G
e
n
e
r
a
t
o
r
L
v
l
2
a

61

4.3 AnalysisProcedure for Level 2a 4 REFINED ARCHITECTURE

Figure 34: Sequence Diagram for the NodeLinkerLvl2a

to add further transitions to the AnalysisGraphLvl2a, for example from the Compo-
nent the intent originates from to the Component started by the intent. Such a transition
is needed in detail level COMPONENT FLOW to model that a flow from the first to the
second component exists. If the IntentAnalyzerLvl2a has analyzed all statements, the
AnalysisGraphLvl2a enriched with Transitions describing flow concerning intents
is returned to the GraphGeneratorLvl2a. This AnalysisGraphLvl2a is then for-
warded to the NodeLinkerLvl2a via calling the method link(...). In addition the
.apk is passed as a parameter since the NodeLinkerLvl2a will call Soot and needs the
.apk for that.

The behavior of the NodeLinkerLvl2a is shown in Figure 34. When link(...) is
called it gets an AnalysisGraphLvl2a which then will be enriched with transitions and
further elements. To do this the first step is to call Soot in the method getGraphsFrom-
Soot(...). The NodeLinkerLvl2a has two inner classes NodeLinkTransformer-
Part1 and NodeLinkTransformerPart2 which are extensions for the Soot classes
SceneTransformer and BodyTransformer. These classes will instruct Soot to create
a CallGraph for the .apk and a UnitGraph for every method representing the control

62

4 REFINED ARCHITECTURE 4.3 AnalysisProcedure for Level 2a

flow in the method.

Since the main()method call from Soot has no return value, Soot will be instructed to store
the created UnitGraphs and the CallGraph in class variables of the NodeLinkerLvl2a
(see Fig. 32). The Soot.main() call invoked in the method getGraphsFromSoot(...)
will therefore be responsible for initializing the class variables callGraph and method-
Flows. In getGraphsFromSoot(...) dummy main methods will be created. For more
information why this is needed and how this is done see Section 3.

The next step the NodeLinkerLvl2a has to execute is combining the UnitGraphs
and the CallGraph to one DirectedGraph via the method createControlFlow-
Graph(). Note that UnitGraph, CallGraph and DirectedGraph are Soot classes.
After executing this step the NodeLinkerLvl2a has a graph representing the control flow.
This graph has still the structure provided by Soot. Before it can be passed to the Analyzer-
Lvl2a it has to be transformed into an AnalysisGraphLvl2a. But to perform a Level 2a
analysis the data flow has to be modeled and since the EnhancedInput structure of the
overall framework would have to be enriched with additional classes an attributes to provide the
possibility to evaluate statements (e.g. no recognition of variables in a statement), we decided
to model the data flow on top of the graph structure provided by Soot before transforming their
graph structure into the A3 structure because Soots representation already provides the required
structure. This means the NodeLinkerLvl2a will call modelDataFlow() as well as
modelControlDependency() and the methods will model the corresponding flow on the
directed graph. The newly modeled transitions are collected into a data structure and a source
and target as Unit objects are saved for each of those transition. Unit is the type which is
resembled in our data structure by the class Element(Fig. 15).

The data flow will be computed by doing a reaching definitions analysis whereas the control
dependency will be modeled by first computing postdominance relations and based on this the
control dependencies.

After modeling the dependencies described above, the directed graph with the newly added
transitions will be transformed into an AnalysisGraphLvl2a. Therefore, the partially en-
riched AnalysisGraphLvl2a that was passed from the GraphGeneratorLvl2a to the
NodeLinkerLvl2a has to be enriched by different types of transitions. This happens by map-
ping each node in the directed graph to a node in the AnalysisGraphLvl2a and transform
the existing transitions in the directed graph to transitions in the AnalysisGraphLvl2a.
Since different flows and dependencies have to be modeled, the class Transition will be
extended by the class TransitionLvl2a (see Fig. 36) which in addition to the inherited
attributes and methods has a type attribute. This enables the AnalyzerLvl2a to distin-
guish between the different sorts of transitions. The necessity of this distinction will be seen
in Section 4.3.3. For every Transition in the directed graph the NodeLinkerLvl2a
executes its method createTransition(...) and then adds the just created Tran-
sitionLvl2a to the AnalysisGraphLvl2a via the method addTransition(...)
provided by the interface AnalysisGraph (see Fig. 15).

63

4.3 AnalysisProcedure for Level 2a 4 REFINED ARCHITECTURE

In addition to the transitions and the already existing nodes between them, some addi-
tional nodes have to be added to the AnalysisGraphLvl2a. The first class of nodes are
EntryPoints which were added as starting nodes to Soot in the method getGraphs-
FromSoot(...). The dummy main method will be added as an EntryPoint object to
the AnalysisGraphLvl2a. Another additional node class are Parameter nodes. For
every method call, four parameter nodes are added to the AnalysisGraphLvl2a via the
method addParameterElement(...). For every enumeration element of the enumera-
tion ParamType (see Fig. 36) one Parameter is created. In addition to the control flow, data
flow and the control dependency transitions CALL transitions from a method call Statement
to the Method as well as SUMMARY Transitions between ACTUAL_IN and ACTUAL_-
OUT nodes of one Method and PARAM transitions from ACTUAL_IN to FORMAL_IN
and from FORMAL_OUT to ACTUAL_OUT will be added to the AnalysisGraphLvl2a.
These additional nodes and transitions will be needed to perform context sensitive backward
slicing. 11

After the graph is transformed successfully the enriched AnalysisGraphLvl2a is
returned to the GraphGeneratorLvl2a which in turn then forwards the graph to the
A3AnalysisProcedure.

4.3.3 AnalyzerLvl2a

The A3AnalysisProcedure gets an AnalysisGraphLvl2a that is added as param-
eter to the method analyze(...) called on the AnalyzerLvl2a. The method is pro-
vided since the AnalyzerLvl2a implements the interface Analyzer (see Fig. 12). Up to
the point where the A3AnalysisProcedure calls analyze(...) on the Analyzer-
Lvl2a the level 2a specific workflow in SUMMARY and in COMPARISON is exactly the
same. But when instructing the AnalyzerLvl2a to execute the method analyze(...)
and COMPARISON mode is selected a previous result is passed in addition to the Analy-
sisGraph. If the previous result is passed, the AnalyzerLvl2a knows that is has to do
a comparison after finishing the analysis of the graph. But nevertheless the graph has to be
analysed as first step in both modes.

The structure of the analysis done by the AnalyzerLvl2a is shown in Figure 37. The first
step will be the computation of sources and sinks. This is done in the SourceAndSinkCom-
puter. As described in the Requirement Specification we will identify two types of sources.
They can be identified by looking at the transition types of incoming or outgoing transitions
of the statements in the AnalysisGraphLvl2a. If a statement has a call transition to
a method and that method requires a permission, it is a source. Note that in this case the
SourceAndSinkComputer has to identify the transition as call transition via analyzing

11according to Hammer: Information Flow Control for Java - A Comprehensive Approach based on Path
Conditions in Dependence Graphs, Universit’́at Karlsruhe (TH), Fak. f. Informatik, July 2009. ISBN
978-3-86644-398-3

64

4 REFINED ARCHITECTURE 4.3 AnalysisProcedure for Level 2a

Figure 35: Class Diagram of the AnalyzerLvl2a

65

4.3 AnalysisProcedure for Level 2a 4 REFINED ARCHITECTURE

the type attribute of the TransitionLvl2a but then has to check whether the Statement
has a Permission since the information whether a method needs a permission will be stored
in the Statements that are method calls (for details see Sec. 4.1.4). Analogously to this
behaviour a return result of another component can be detected as source.

As sink we detect only library method calls where information is passed via parameters.
This can be detected by analysing whether there is any data flow transition to such a method
call, because this indicates that information flows via parameters to that method call.

The methods computeSources(...) and computeSinks(...) will do the just
described analysis on the list of all statements passed to them as parameter and return a subset
of those statements as list of Sinks respectively list of Sources. In Figure 36 is shown that
Source and Sink are classes representing special Statements. The returned lists will be
stored in class variables of the AnalyzerLvl2a, since this is some of the information that
will be used to create the AnalysisResultLvl2a.

After computeSourceAndSinks(...) has finished, the BackwardSlicer will
be called by the AnalyzerLvl2a to perform the backward slicing algorithm. One such
backward slice is computed for every of the detected sources, since for every of the sources all
possible flows from any sink to that source have to be detected.

The backward slice for a sink is computed mainly in two phases accordingly to the context-
sensitive approach described by Hammer. 12 This approach is a kind of reachability problem
for graphs and can be executed in time O(size of graph). The first phase is executed on the
AnalysisGraphLvl2a and a Sink as slicing criterion. It traverses all transitions of type
DATAFLOW, CONTROLDEPENDENCY, CALL, SUMMARY and those PARAM transitions
going from a Parameter of type FORMAL_OUT to a Parameter of type ACTUAL_OUT.
This includes all flows in the method of the slicing criterion as well as those flows from methods
calling this method.

The second phase starts from the list of Parameter nodes that were omitted in the first
phase and ignores CALL, CONTROLFLOW and PARAM transitions going from a ACTUAL_-
IN to a FORMAL_IN Parameter. All other transitions will be taken into account and a
subset of reachable nodes and transitions between them will be computed.

After executing both phases the method slice(...) computes the union of the two
phases by using the two sliced AnalysisGraphLvl2as and computes the union of the two
slices. This means the union of the set of Elements of both graphs as well as the union
of the sets of Tranistions is calculated and a new AnalysisGraph consisting of those
Elements is created. This united graph is then returned to the AnalyzerLvl2a who can
analyze in the method extractExecutionPaths(...) from which source to the sink,
that was slicing criterion for that sliced graph, a data flow path exists. If paths are found, they
are added to the Analyzer’s attribute executionPaths and the corresponding source and

12Hammer: Information Flow Control for Java - A Comprehensive Approach based on Path Conditions in
Dependence Graphs, Universit’́at Karlsruhe (TH), Fak. f. Informatik, July 2009. ISBN 978-3-86644-398-3

66

4 REFINED ARCHITECTURE 4.3 AnalysisProcedure for Level 2a

Figure 36: Extended Data Structure for Level 2a

67

4.3 AnalysisProcedure for Level 2a 4 REFINED ARCHITECTURE

Figure 37: Sequence Diagram for the AnalyzerLvl2a

sink are stored in the map availablePaths which collects from which source to which
sink a flow exists.

If all sinks were slice, the analysis part for SUMMARY mode is finished and an Analysis-
Result can be created by invoking the method createAnalysisResult(...) which
then uses the class attributes of the AnalyzerLvl2a to create an object of type Analysis-
ResultLvl2a. This behaviour is shown in Figure 37. If COMPARISON mode is selected,
which means the parameter prevRes was not null, createAnalysisResult(...)
creates a result object of type ComparisonAnalysisResultLvl2a which is a special
type of AnalysisResultLvl2a as visualized in Figure 36. In addition to the inherited
methods and attributes of the AnalysisResultLvl2a this type has a list of new paths from
source to sink that are in the newly analyzed .apk but have not been in the previous result. To
fill this list the AnalyzerLvl2a has to execute an additional step after creating an Anal-
ysisResult if he is in COMPARISON mode. For this case the class ResultComparer
exists (see Fig. 35) and provides the method compPrevAndCurrent(...) which gets the
previous analysis result and the just created one and compares which paths are new. Those
are then stored in the class attribute of the ComparisonAnalysisResultLvl2a via the

68

4 REFINED ARCHITECTURE 4.3 AnalysisProcedure for Level 2a

setter (see Fig. 36).

Finally, depending on the mode the ComparisonAnalysisResultLvl2a respectively
the AnalysisResultLvl2a is returned to the A3AnalysisProcedure.

If during creation of the AnalysisGraphLvl2a or the AnalysisResultLvl2a one
of the cases is observed, which produce a warning or an error according to the Target Level
Agreement these Messages are added to the AnalysisResultLvl2a using the Message
class of the overall framework (see Sec. 4.1.2).

4.3.4 AnalysisResultLvl2a

The last point which is specific for Level 2a and has to be mentioned in this section is the
way the methods getTextualResult(...) and getGraphicalResult(...) of
the abstract class AnalysisResult (see Fig. 15) are realized in the Level 2a specific class
AnalysisResultLvl2a.

The Client can request the filters as a list of Strings. For Level 2a the user can filter
the result output to take only a subset of the found sources and sinks into account. Therefore,
the method getFilters() of the AnalysisResultLvl2a will return a list of Strings,
where each String begins with the keyword ’source’ or ’sink’ plus the name String of that
source or sink. This list is stored in the class AnalysisResultLvl2a as attribute filter
to avoid that the list has to be constructed every time getFilters() is called. Instead it will
be initialized when constructing the AnalysisResultLvl2a object.

When the client wants to display the result he can call getTextualReult(...) or
getGraphiclResult(...) passing as parameters a detail level of type DetailLevel
which is an interface provided by the framework (see Fig. 15) and a list of Strings as filter.
The methods are both provided by the abstract class AnalysisResult (see Fig. 15). If
one of the methods is called on the AnalysisResultLvl2a the detail level will be an
element of type DetailLevelLvl2a. This class has one attribute detail which is an
element of the enumeration DetailLevelsLvl2a consisting of the three elements RES_TO_RES,
COMPONENT and STATEMENT which resemble the three possible detail levels described in
the Target Level Agreement. These detail level classes are displayed in Figure 36.

An exemplary behavior for the method getTextualResult(...) describes Figure 38.
Except for the last method call the strategy for getGraphicalResult(...) is equiv-
alent. The first step is to retrieve the selected sources and sinks represented by the list of
Strings. Therefore, the method createFilteredSources(...) has to map every String
starting with the substring ’source’ back to a source which then are stored in a local variable
of the method getTextualResult(...)/getGraphicalResult(...). create-
FilteredSinks(...) behaves equally to the just explained method just looking for sinks
instead of sources.

The next step is to create a subset of the list of paths from sources to sinks which was stored
in the AnalysisResultLvl2a by the Analyzer. Therefore, for every combination of the

69

4.4 AnalysisProcedure for Level 2b 4 REFINED ARCHITECTURE

Figure 38: Class Diagram of the AnalysisResultLvl2a

filtered subsets of sources and sinks the method getPathFromSourceToSink(...) can
be called to get the paths or null if no path exists. An alternative way of implementing is to
create a map from source to sink which is a subset of the attribute availablePaths of the Anal-
ysisResultLvl2a and then call getPathFromSourceToSink(...) only for the
existing paths. However, if the subset of paths corresponding to the filter is created, the method
createTextualResult(...) respectively createGraphicalResult(...) is
called which then will transform the paths into the result String provided in HTML5 respec-
tively the Graphviz DOT language (see Sec. 4.1.2).

4.4 AnalysisProcedure for Level 2b

In this section the class diagram for Level 2b is described in detailed and we will describe the
behaviour of the classes with a sequence diagram. The class diagram (see Figure 39) is Level
2b specific, so only the important classes which are used in Level 2b are mentioned in the class
diagram. Level 2b is an extension of Level 1 and in Level 2b the analysis is done for more
than one App. First we perform the Level 1 analyses for all the input apks individually, which

70

4 REFINED ARCHITECTURE 4.4 AnalysisProcedure for Level 2b

can be seen in the Level 1 description. Then with the collection of analysis results our tool
performs Level 2b analysis.

4.4.1 AnalysisFactoryLvl2b

AalysisFactory works the same way as the other two levels. The AnalysisFac-
toryLvl2b implements an interface called AnalysisFactory. The AnalysisFac-
toryLvl2b has a constructor, the argument that are passed by the constructor are input
apk(s) and non-native apk(s) (which are only supporting apk(s)) in case of SUM-
MARY mode and input apk(s), non-native apk(s) and a previous AnalysisResult in
case of COMPARISON mode. The abstract method CreateAnalysis() creates the En-
hancer, GraphGeneratorLvl2b and Analyzerlvl2b which builds the AnalysisProcedure.
The CreateAnalysis() creates the Analysis for SUMMARY or COMPARISON mode
depending on the number of parameter passed.

4.4.2 A3AnalysisProcedure

The A3AnalysisProcedure class implements the AnalysisProcedure interface
which has an aggregation relation with three classes which are Enhancer, GraphGener-
atorLvl2b, Analyzerlvl2b. The function of the each and every class will be defined
in detail bellow.

4.4.3 Enhancer

The Enhancer class working principle is already described above which also common for
Level 2b. In addition to that in Level 2b the Enhancer uses the function CollectRe-
sult(...) for the first time to handle the collection of results. This method just passes the
list of results from the AnalysisRunner to the GraphGenerator component.

4.4.4 GraphGeneratorLvl2b

The GraphGeneratorLvl2b class implements the interface class called GraphGenera-
tor which has a method generateGraph(...) which passes the ResultInput object
which it got from the enhancer and returns the value as an Analysisgraph. The Graph-
GeneratorLvl2b class also has aggregation relation with two other level specific classes
IntentAnalyzerLvl2b and NodeLinkerLvl2b. Now the GraphGenerator com-
ponent is called to build a graph for the collection of results which is given as input. Since we
already seen, that the GraphGenerator work for a single .apk in Level 1, here we will see
how the graph for the collection of results is generated. For this the IntentAnalyzer and

71

4.4 AnalysisProcedure for Level 2b 4 REFINED ARCHITECTURE

Figure
39:C

lass
D

iagram
forL

evel2b

72

4 REFINED ARCHITECTURE 4.4 AnalysisProcedure for Level 2b

NodeLinker which are the subcomponents of the GraphGenerator communicate arbi-
trary between them to analysis the intent and build a graph. The IntentAnalyzerLvl2b
class has a constructor which passes ResultInput as argument. In Level 2b the Inten-
tAnalyzer component is important to analyze implicit intent, to track the communication
between two or more Apps. The function of the IntentAnalyzer varies between different
modes.

• SUMMARY,APP and COMPARISON, APP modes the IntentAnalyzer considers
first apk as starting point.

• SUMMARY,ALL and COMPARISON, ALL modes the IntentAnalyzer considers
all apks as starting point.

The level 2b specific class IntentAnalyzerLvl2b has a method called analyzeIm-
plicitIntents() which tracks the implicit intent in the ResultInput. The ana-
lyzeImplicitIntents() method analysis all the result statement in the ResultIn-
put and if it comes across an implicit intent especially in MAYBE_MISSING group in the
Level 1 analysis result and if the IntentAnalyzerLvl2b finds a suitable statement in the
result of any other Apps, then the link method in the NodeLinkerLvl2b class is called,
which links the implicit intent between the statement and the respected components and adds
the transition to the AnalysisGraph. The functioning of GraphGenerator class can
be seen in Figure 40. If the IntentAnalyzerlvl2b analysed all the statements for intents
the NodeLinkerlvl2b links all intents between the statements and an AnalysisGraph
is generated which the GraphGenerater finally returns.

4.4.5 AnalyzerLvl2b

The AnalyzerLvl2b class implements a interface called Analyzer which passes the
AnalysisGraph as input object in case of SUMMARY mode. In COMPARISON mode the
Analyzer passes the AnalysisGraph and a previous AnalysisResult as input ob-
jects. The AnalyzerLvl2b class also has an aggregation relation with two classes which are
the LeastFixpointComputerLvl2b and the ManifestPermissionComparer.
LeastFixpointComputerLvl2b class has a function called generateLeastFix-
point(...) which passes and returns an AnalysisGraph. The LeastFixpoint-
Computer component is specific used in Level 2b, since Level 2b will analyze both explicit
and implicit intent for more then one App, the flow of intent should be computed until a
least fix point. During the FixedpointComputer results of are aggregated per App and
they are analyzed to find out the resource usages through implicit intent. The LeastFix-
pointComputerLvl2b determines all components reachability from a component in the
AnalysisGraph. The ManifestPermissionComparer component works in a sim-
ilar to one in Level 1. The component compares the permissions used in Android manifest
file with the permissions used in the statements of the source code and the permissions re-
quired by the components, for this the ManifestPermissionComparer class uses a list

73

4.4 AnalysisProcedure for Level 2b 4 REFINED ARCHITECTURE

Figure
40:

Sequence
D

iagram
for

G
r
a
p
h
G
e
n
e
r
a
t
o
r
L
e
v
e
l
2
b

74

4 REFINED ARCHITECTURE 4.5 User Interface Structure

of permission that is obtained from the interface XMLParser including the intent filters in
case of Level 2b and all the permissions from the DataStorage(seen Figure 41). Then the
fillPermission() method is called to fill the permissions to the node in the Analysis-
Graph. Here the tool differentiate which COMPONENT of which APP uses which resource.
The generation of the results and the categorization of group of permissions are handled by the
method generateAnalysisResult().

4.4.6 AnalysisResultLvl2b

Level 2b displays all the errors and warnings which are found during the Level 1 analyses
except for those which are caused by Implicit intents. Apart from those if a component uses
a permission which is not defined or a specific resource is unused then a warning is listed
resource usage undefined and resource is unused respectively. If there is
no matching intent filter it is listed as warning message. The results are displayed only for APP
and COMPONENT level in which the element occurs.

4.5 User Interface Structure

This section provides information about the structure of the UI related classes of the Android
App Analysis tool. Apart from the detailed UI class diagram description, the content of this
section will be enhanced further by explaining about the behaviour of the classes too, with the
help of the UI sequence diagram.

With respect to the UI Class diagram (see Figure 42), the important classes which will be
covered as a part of this section are:

• ClientGUI

• ClientCommandLine

• GUI

• CommandLine

• GraphicalViewCreator

• TextualViewCreator

Other than the above mentioned classes, the structure and the methods of the necessary
classes will be described wherever necessary. ClientGUI and ClientCommandLine
classes are extended from the Client abstract class. So the common non-abstract functions
and the attributes of the client classes are available in the Client abstract class. So the first
subsection will introduce the Client abstract class structure and its methods and then the
further subsections will describe the structure of the remaining important classes.

75

4.5 User Interface Structure 4 REFINED ARCHITECTURE

Figure
41:Sequence

D
iagram

for
A
n
a
l
y
z
e
r
L
e
v
e
l
2
b

76

4 REFINED ARCHITECTURE 4.5 User Interface Structure

Fi
gu

re
42

:C
la

ss
D

ia
gr

am
fo

rU
se

rI
nt

er
fa

ce

77

4.5 User Interface Structure 4 REFINED ARCHITECTURE

ApplicationEntryPoint From the class diagram, the entry point for starting the application
in both the GUI and CommandLine mode by the user is done through a single entry point
class named ApplicationEntryPoint. This class decides whether the application was
triggered using the command line or GUI. Based on that, this Class will call the Business Logic
classes named ClientGUI or ClientCommandLine. The instance of ClientGUI or
ClientCommandLine will be created with the help of their related constructors and will
be set in the respective attributes named clientGUI and clientCommandLine in the
ApplicationEntryPoint class.

4.5.1 Client

As mentioned in the previous section, this Client abstract class serves the common at-
tributes and the non-abstract methods, which will be useful for extending the client classes.
This class provides a way to use the common attributes to access the common dependent
classes such as UserInput, ConfigManager, AppIdentifier, ResultLoader and
ResultStorer.

Consider this sequence diagram (see Figure 43), which actually represents how the input
from the user has been processed in the tool with different interactions between the above
mentioned UI classes as well as the other important classes to retrieve the analysis result. From
the sequence diagram, as explained earlier, user will provide the input through user interface or
command line with the help of ApplicationEntryPoint class which in turn will create
the instance of the respective Business Logic class using its constructor. As both of those
classes extend this abstract class Client, its constructor will get called too. One important
point we need to consider here is when the user uses our application through GUI, the Business
Logic class object from the entry point class will be created only when the user starts analyzing
or comparing the application. From command line perspective, all the inputs as well as the
option for doing the analysis will be already given by the user when they start the application
by calling the entry point class.

UserInput This class is created along with the necessary attributes by setting the selected
Level, LevelSpecificMode and Mode. From the class diagram perspective all the above
mentioned level and mode related inputs are considered as enumeration which contains set of
pre-defined constants. Enumeration Level consists of values such as LEVEL1, LEVEL2A
and LEVEL2B. Similarly MODE consists of values such as SUMMARY and COMPARISON.
LevelSpecificMode enumeration contain APP and ALL as its values which will be
specific to Level 2b. Generally, attributes present in this UserInput class is of private field
and it can be accessed outside this class through their setter and getter methods. Some of
the attributes in this UserInput class represent the file location of the .apk and previous
analysis result. There are important functions as well as one attribute in this class which will be
discussed later.

78

4 REFINED ARCHITECTURE 4.5 User Interface Structure

Figure 43: Sequence Diagram for User Interface - Detail Level1

79

4.5 User Interface Structure 4 REFINED ARCHITECTURE

ConfigManager The attribute for accessing the methods of the ConfigManager class
through the Client class serves two purposes. One for configuring the initial analysis
settings using the configureAnalysisSetting(...), and the other for validating the
provided user input with the help of the validateInput(...). This method accepts the object of
the UserInput class as the only parameter. This validation method returns the value of type
UIMessage, which contains necessary information about the reason for the validation failure.
If the validation failed, then our tool will display necessary messages and won’t allow the user
to proceed further until the correct inputs are entered.

ResultLoader With respect to the sequence diagram and the class diagram, the purpose
for using the ResultLoader class is for loading the previous analysis result, which is
required for the COMPARISON mode. The loadPreviousAnalysisResult(...)
in the ResultLoader class will return the object of the AnalysisResult class which
will be stored in the previousAnalysisResult attribute of the UserInput class. This
stored result will be used for the subsequent analysis whenever required.

AppIdentifier ApplicationEntryPoint class will call the compareApp() in the
Business Logic class only for Level 1 and Level 2a. Once the Client got the previous
analysis result, it will call the compareAppWithPreviousResult(...) in the AppI-
dentifier class for the COMPARISON scenario. There are certain internal methods in this
class which will get the application version code, version name and fingerprint through external
method call to the A3XmlParser class. The external call will be made only for getting the
information related to the input .apk file. The ManifestInfo class is used for getting
the application version related information through the attributes versionCode and ver-
sionName. The internal methods used in this case for getting the manifest information and
the fingerprint information are getManifestInformation(...) and getFinger-
Print(...).The related manifest and fingerprint information from the previous analysis
result will be fetched using separate methods and finally based on the comparison between
both the results, the compareAppWithPreviousResult(...) will return the value as
UIMessage to the Client class which in turn will be displayed to the user as a String value.

In general, user can start performing the analysis once they have given the necessary input in
the application. This can be done through the performAnalysis() in the Business Logic
class. One important point to remember is that validating the user input will be skipped incase
of COMPARISON mode of Level 1 and Level 2a as the valdation is done before starting the
comparison process. For other scenarios,

1. The first step is user input validation through the method in ConfigManager class.

2. The Second step, Business Logic Class calls the Analysis Class with the necessary
parameters to fetch the return value as List<Analysis>.

3. Third step, for getting the actual analysis result we will pass the result which we got
from the previous step to an external method of AnalysisRunner class.

80

4 REFINED ARCHITECTURE 4.5 User Interface Structure

ResultStorer After getting the analysis result from the AnalysisRunner, the user had
an option to either view or save the result. From the second detailed sequence diagram of the
UI (see Figure 44) through the Client class the instance of this ResultStorer class will
provides the storeResult(...) for saving the analysis result at the user provided file
location.

ResultFilter If the user want to view the analysis result instead of saving it, then there is
a possibility to view the result in either the graphical mode or textual mode. The results for
both modes are available in the instance of AnalysisResult class which we got earlier.
The results can be filtered by the users by selecting the detail level and result filter using the
filterTextualViewResult(...) and filterGraphicalViewResult(...).

4.5.2 ClientGUI

As mentioned in the previous section this ClientGUI class contains few more specific meth-
ods especially for GUI, other than the extended common Business Logic methods from the
Client abstract class. This sub class is having the constructor with the parameters similar
to the one in its super class. Other than that it had one specific method named proceed-
ToComparison(...), which is used for saving the SUMMARY mode result in the result
view page and will make sure the file location and other important attributes such as Level,
LevelSpecificMode in its object. So when the GUI page moves to the menu page for the
COMPARISON mode, these persisted values can be re-used by the GUI from the returned
object of this class.

This class is having an attribute which is specific for creating the instance of the GUI class
to access the related methods for displaying the graphical and textual result in the GUI.

GUI GUI class is specifically used for showing the result to the user in GUI. It has two
attributes graphicalViewCreator and textualViewCreator which represents the
respective instance of the GraphicalViewCreator class and TextualViewCreator
class. The invokeGraphicalViewCreator(...) in this class is used for calling the
methods using the graphicalViewCreator attribute for displaying the graphical analysis
result in the GUI. Similarly, invokeTextualViewCreator(...) access the methods
which are accessible through the textualViewCreator attribute for displaying the textual
analysis result in the GUI. Parameter which needs to be passed for both these methods are
string.

TextualViewCreator This class has a method named showTextualViewOutput(...),
which will take the textual analysis result which was represented as a html string format. Then
using this parameter it will create the necessary GUI along with this html content for the user
to view it.

81

4.5 User Interface Structure 4 REFINED ARCHITECTURE

Figure 44: Sequence Diagram for User Interface - Detail Level2

82

4 REFINED ARCHITECTURE 4.5 User Interface Structure

GraphicalViewCreator This class has the method named showGraphicalViewOutput
which is used for accessing showing the graphical analysis result to graphically in the GUI. As
mentioned in the earlier paragraphs, the graphical analysis result represented as a string format
where the structure of the graph was represented in the DOT language format. So for parsing this
DOT language to the equivalent graphical representation, we are going to use the open source
library name Gephi Toolkit for rendering the DOT language graphically. In this class, we are
going to import the appropriate packages from the Gephi Toolkit for using the necessary classes
for rendering the image. As the class in the toolkit only accepts the file for reading and rendering
the graph, we are creating the temporary file using the createTemporayFile(...) by
passing the graphical analysis result string. After rendering the graph from the file, the result
will be shown in the GUI and then the temporary file will be deleted.

4.5.3 ClientCommandLine

As mentioned in the first section, other than the common Business Logic classes from the
abstract base class this ClientCommandLine class has few additional methods which are
very specific when the user accesses our application through the command line. Similar
to the ClientGUI class, this one has constructor with parameters that match the base class.
With respect to the validation, this class has a method named validateCommandLineIn-
putArguments(...) which is used for the initial validation of the user input. This method
will check whether the user has entered the commands and the option names correctly without
any mistakes. So, if validation fails, then the tool will display the relevant information for the
cause of validation failure and will ask the user to re-enter the input again.

There is a provision for continuing the analysis after the application comparison results
displayed in the GUI. Similarly, command line mode gives the option for user to continue the
analysis or not by asking the input from them. There is a specific method called continue-
Analysis(...), which is used for this scenario to let the application decide whether to
continue the analysis or not based on the user input.

The remaining three methods, displayCommandLineTextualResult(...), dis-
playGraphicalResult(...), displayCommandLineMessageResult(...)are
specific for displaying the result to the user in either the textual analysis result through com-
mand line or graphical analysis result with the help of the instance of the CommandLine
class which will be explained in the next paragraph. There is an attribute named isView-
GraphicalResult in this class to decide whether the user has requested to view the result
graphically or not, which will be used in the ApplicationEntryClass class to call the
specific method.

CommandLine This class provides the methods which are related to displaying the results
to the user. The parseHtmlTextResult(...) is specific for calling the instance of
the HtmlParser class to parse the textual result which is of the html string, to display

83

5 USER INTERFACE

the output in the command line. More information about the HtmlParser class is mentioned
in the next paragraph. For displaying the graphical result, the showGUIGraphicalRe-
sult(...) will internally call the method which was mentioned in the previous section in
the GraphViewCreator class with the help of the instance of the GUI class.

HtmlParser As mentioned in the previous paragraph, this class has parse(...) which
will parse the html string. It extend the HTMLEditorKit.ParseCallback class which is
available as a part of the Java Swing package.

4.5.4 UI StateChart Diagram

The initial steps involved with UI can be explained clearly with a state machine diagram (see
Figure 45).
For both the UI (GUI or Command Line), the first step is to get the inputs from the user.
After the inputs are provided, analysis will start either by comparing the version information of
apps in COMPARISON mode by the calling method compareApp() or directly initiating the
analysis by calling method performAnalysis().In the analysis procedure, first it triggers
validateInput() for the validation of inputs.
If the validation fails, a validation error message is shown through showUIMessages()
and again user is asked to provide the correct input. If the validation succeeds then further
analysis is done by checking whether we are performing the analysis in COMPARISON mode
by checking isComparisonMode.
In COMPARISON mode, first the previous analysis result is loaded by calling method load-
PreviousAnalysisResult(...).After the previous analysis result is loaded, we check
for COMPARISON mode in Level 1 or 2a and compare the version information of both the
input provided and showed it to the user through the compareAppWithPreviousRe-
sult(...) method. After the comparison message is shown,the user can cancel or choose
to proceed with further analysis.
Incase of Summary mode or Level 2b COMPARISON mode or user chooses to proceed with
the analysis after the comparison message is shown, further analysis is started through cre-
ateAnalysis(). In this Analysis object is created and send it to AnalysisRunner class
where the actual analysis starts through runAnalysis(...).

5 User Interface

Introduction This section describes the User Interface of our tool. It contains the information
about two important scenarios with respect to the User Interface Design. They are, GUI
Descriptions and Navigation and Command Line Configurations.

The content of this section is divided into the following sub-sections:

84

5 USER INTERFACE

Figure 45: State Chart Diagram for Initial Steps of the User Interface

85

5.1 Sketches 5 USER INTERFACE

• Sketches
GUI Structure, describes the structure of the application, and the ways in which users
can navigate.
GUI Descriptions, describes how each individual screen is going to look like in our tool
and represents that each individual component comprises a screen.

• Workflow, illustrates about how the navigation within any screen and between different
screens are possible in our tool. It also mentions how the navigation between the screens
was structured by considering the ease of usability from a user perspective as well as
maintaining consistency from a UI Design perspective.

• Command Line
Command Line Configuration, describes the configurations the user has to provide to run
our tool from the Command Line mode.

So, we can use this section as a template or single point of reference for the UI development.

5.1 Sketches

GUI Structure The overall structure of our tool is relatively simple, as shown in the Figure 46.
All the necessary screens of our tool are accessed directly from the Main Page.

GUI Descriptions

1. Main Page
Refer Figure 47
Descriptions When the tool is launched, at first the Main Page will be shown to the
user.
Elements The following is a list of all elements in this screen.

a) ’Main’

Type: Menu
Label: ’Main’
Behaviour: Clicking on Main will open the Main Page.

b) ’Analyze’

Type: Menu
Label: ’Analyze’
Behaviour: Clicking on Analyze will open the Analysis Screen where user
can analyse App(s) on different level.

c) ’View Result’

Type: Menu
Label: ’View Result’

86

5 USER INTERFACE 5.1 Sketches

Figure 46: GUI Structure

Figure 47: Main Page

87

5.1 Sketches 5 USER INTERFACE

Behaviour: Clicking on View Result will open another screen where user can load
any previously stored result and view it.

d) ’About’

Type: Menu
Label: ’About’
Behaviour: Clicking on About will open another screen which gives general infor-
mation about our tool.

e) ’Help’

Type: Menu
Label:] ’Help’
Behaviour: Clicking on Help will open another screen which gives information
about how to navigate through the windows available in our tool.

2. Analysis Screen
Refer Figure 48
Descriptions Analysis Screen will allow user to analyse Apps in different analysis
level and modes. This screen contains all the elements that will appear on Analysis
Screen during different analysis levels.
Elements The following is a list of all elements in this screen.

a) ’Select the Level’

Type: Dropdown list
Label: ’Select the Level’
Content: This will have drop down value as 1.Level 1(Analyze Permissions) 2.Level
2a(Analyze Intra-App Flow) 3.Level 2b(Analyze Inter-App Permissions)
Default: User has to select the level in which he wants to perform analysis.

b) ’Select the level specific mode’

Type: Dropdown list
Label: ’Select the level specific mode(Inter-App)’
Content: This will have drop down value as 1. APP 2. ALL
Default: User has to select the mode in which he wants to perform analysis.
Comment: This will be visible only if Level 2b is selected in the Select the Level
dropdown list.

c) ’Select the Mode’

Type: Dropdown list
Label: ’Select the Mode’
Content: This will have drop down value as 1. Summary 2. Comparison
Default: User has to select the mode in which he wants to perform analysis.

88

5 USER INTERFACE 5.1 Sketches

Figure 48: Analysis Screen

89

5.1 Sketches 5 USER INTERFACE

d) ’Initial Input’

Type: Group Box
Label: ’Initial Input’
Sub-elements: It contains two text boxes and two buttons with label: Browse,
Browse App(s).
Behaviour of Sub-element: Clicking on Browse button will open an explorer window
to select and load Apk file.
Clicking on Browse App(s) button will open an explorer window to select and load
Apk files.
Comment: Browse App(s) button and corresponding text box will be visible only if
the user has selected ALL mode in Level 2b. Also for providing multiple Apk files,
all the input files should be kept in one folder.

e) ’Input for Comparison’

Type: Group Box
Label: ’Input for Comparison’
Sub-elements: It contains a text box and a button with label: Browse.
Behaviour of Sub-element : Clicking on Browse button will open an explorer
window to select and load previously saved result file.
In Level 1 and 2a, as soon as the input file is loaded, it will start the comparison
between initial input file and the input file given for comparison and the comparison
message will be shown in the footer.

f) ’Non-Native Apps’

Type: Group Box
Label: ’Non-Native Apps’
Sub-elements: It contains a text box and a button with label: Browse App(s).
Behaviour of Sub-element : Clicking on Browse App(s) button will open an explorer
window to select and load Apk files which will create an environment for Inter-App
analysis.
Comment: Non-Native App(s) group box will be visible only if the user has selected
Level 2b. Also for providing multiple Apk files, all the input files should be kept in
one folder.

g) ’Proceed’

Type: Button
Label: ’Proceed with the Analysis’
Behaviour: Clicking on this button will start the analysis.

h) ’Cancel’

Type: Button
Label: ’Cancel’

90

5 USER INTERFACE 5.1 Sketches

Behaviour: Clicking on this button will cancel the analysis and take the user to the
Main page.

i) ’Rotating Circle’

Type: Image
Behaviour: A Rotating Circle will be shown to the user as long as analysis is going
on by making other screen elements disabled.

j) ’Result Representation’

Type: Group Box
Label: ’Result Representation’
Sub-elements: It contains two link button with label: Save only, View Result.
Behaviour of Sub-element : Clicking on Save only link button will ask the user for
the path and save the result, then the user will be redirected to the Main Page.
Clicking on View Result link button will take user to the Result Screen.

k) ’Footer’ Type: Label
Behaviour: It will show all kinds of GUI related messages(Input validation errors,
comparison result message, higher API warning). Comparison result will be shown
in case of Level 1 and Level 2a in COMPARISON mode. Higher API warning will
be shown if the user selects an APK built in an API version above the maximum
API version supported by our tool.

3. View Saved Result Screen
Refer Figure 49
Descriptions View Result Screenwill allow user to load previously analysed(saved)
result file and view the result.
Elements The following is a list of all elements in this screen.

a) ’Select File’

Type: Group Box
Label: ’Select File’
Sub-elements: It contains a text box and a button with label: Browse.
Behaviour of Sub-element : Clicking on Browse button will open an explorer
window to select and load the previously saved result file.

b) ’View Result’

Type: Button
Label: ’View Result’
Behaviour: Clicking on View Result button will open Result Screen which
contains the loaded result of the file selected.

4. About Screen
Descriptions About Screen will provide general information about our tool.
Elements The following is a list of all elements in this screen.

91

5.1 Sketches 5 USER INTERFACE

Figure 49: View Saved Result Screen

a) ’About’

Type: Label
Label: About

b) ’Information’

Type: Label
Content: general information about our tool.

5. Help Screen
Descriptions User can refer to Help Screen incase of any clarification needed for
operating our tool.
Elements The following is a list of all elements in this screen.

a) ’Help’

Type: Label
Label: Help

b) ’Information’

Type: Label
Content: information about how to navigate through the windows available in our
tool.

6. Result Screen
Refer Figure 50

92

5 USER INTERFACE 5.1 Sketches

Figure 50: Result Screen

93

5.1 Sketches 5 USER INTERFACE

Descriptions Result Screen will allow the user to view the result in two different
ways i.e textual and graphical. Also user can view the analysis specific messages on
Result Screen. Figure 50 shows all the common elements present on the Result
Screen.
Elements The following is a list of all elements in this screen.

a) ’Your Selection’

Type: Label
Content: This label will show what options the user has selected on analysis page
before coming to result page.

b) ’Tabs’

Type: Tab Panel
Content: There will be three tabs on Result Screen. textual tab will show
the corresponding analysis result in textual mode and this tab will be selected by
default when the Result Screen is shown for the first time. graphical tab will
show the corresponding analysis result in graphical mode. message tab will show
all the messages related to the analysis result.

c) ’Save’

Type: Button
Label: ’Save’
Behaviour: Clicking on Save button will ask the user for the path and save the
result,then the user will be redirected to the Main Page.

d) ’Cancel’

Type: Button
Label: ’Cancel’
Behaviour: Clicking on Cancel button will take the user to the Main Pagewithout
saving the results.

e) ’Proceed with Comparison’

Type: Button
Label: ’Proceed with Comparison’
Behaviour: This button will be enabled only if the result screen is shown for
SUMMARY mode. Clicking on this button will save the result and take user to the
Analysis Screen with the elements visible for the COMPARISON mode for
the analysis level selected earlier by the user.

Along with the above described common elements, Result Screen will have differ-
ent set of filters as per different level of analysis.

• Level 1 Result Screen
Descriptions Level 1 Result Screen will have specific set of filters along

94

5 USER INTERFACE 5.1 Sketches

Figure 51: Result Screen for Level 1 Analysis in Summary Mode

95

5.1 Sketches 5 USER INTERFACE

Figure 52: Result Screen for Level 1 Analysis in Comparison Mode

96

5 USER INTERFACE 5.1 Sketches

Figure 53: Result Screen for Level 1 Analysis in Graphical View

97

5.1 Sketches 5 USER INTERFACE

with the common elements of result screen as shown in Figure 51, Figure 52,
Figure 53
Elements The following is a list of all elements specific to this screen.

a) ’Detail level Filters’

Type: Option Buttons
Label: ’Application’,’Component’,’Class’,’Method’
Behaviour: These filters will re-arrange the result into different detail level i.e
application level, component level, class level, method level. Only those option
button will be enabled for which the results are available. For ex. if we are
comparing two different Apps then only application and component filter will
be enabled, but if we are comparing two different version of same App then all
four filters will be enabled. By default application level filter will be selected.

b) ’Permission Filters’

Type: Dropdown List
Label: ’Select the Permission Filter’
Content: This will have drop down vaue as 1.ALL 2.Required 3.May be 4.Un-
used 5.May be missing 6.Missing
Behaviour: Only that category of permissions will be shown which is se-
lected.User can differentiate between permissions by the color described at the
lower part of the screen. By default ALL will be selected.

c) ’Filter Button’

Type: Button
Label: ’Filter’
Behaviour: User needs to click the filter button after the filters i.e Detail Level
Filters and Permission Filters are selected. This will re-arrange the result
according to the filters selected.

• Level 2a Result Screen
Descriptions Level 2a Result Screenwill have specific set of filters along
with the common elements of Result Screen as shown in Figure 54, Figure
55, Figure 56
Elements The following is a list of all elements specific to this screen.

a) ’Detail level Filters’

Type: Dropdown List
Label: ’Select Detail level(Intra-App)’
Content: This will have drop down value as 1.Component Flow 2.Resource
Flow 3.Statement to Statement.
Behaviour: These filters will re-arrange the result into different detail level i.e
Component Flow, Resource Flow, Statement to Statement. Default selection

98

5 USER INTERFACE 5.1 Sketches

Figure 54: Result Screen for Level 2a Analysis in Summary Mode (Component Flow)

99

5.1 Sketches 5 USER INTERFACE

Figure 55: Result Screen for Level 2a Analysis in Summary Mode (Resouce Flow)

100

5 USER INTERFACE 5.1 Sketches

Figure 56: Result Screen for Level 2a Analysis in Graphical View (Component Flow)

101

5.1 Sketches 5 USER INTERFACE

will be Component Flow and with the selection changes results will be re-
arranged.

b) ’Source and Sink Filters’

Type: Dropdown Lists
Label: ’Sources’,’Sinks’
Content: It will contain all the sources and sinks present in the App(s).
Behaviour: User can filter the results by selecting particular Source and Sink.

c) ’Filter Button’

Type: Button
Label: ’Filter’
Behaviour: User needs to click the filter button after the filters i.e Detail Level
Filters, Source and Sink Filters are selected. This will re-arrange the result
according to the filters selected.

• Level 2b Result Screen
Descriptions Level 2b Result Screenwill have specific set of filters along
with the common elements of Result Screen as shown in Figure 57, Figure 58
Elements The following is a list of all elements specific to this screen.

a) ’Detail level Filters’

Type: Option Buttons
Label: ’Application’,’Component’
Behaviour: These filters will re-arrange the result into different detail level i.e
application level, component level.By default application level filter will be
selected.

b) ’Permission Filters’

Type: Dropdown List
Label: ’Select the Permission Filter’
Content: This will have drop down vaue as 1.ALL 2.Required 3.May be
4.Unused 5.May be missing 6.Missing
Behaviour: Only that category of permissions will be shown which is selected.
User can differentiate between permissions by the color described at the lower
part of the screen.

c) ’Filter Button’

Type: Button
Label: ’Filter’
Behaviour: User needs to click the filter button after the filters i.e Detail Level
Filters and Permission Filters are selected. This will re-arrange the result
according to the filters selected.

102

5 USER INTERFACE 5.1 Sketches

Figure 57: Result Screen for Level 2b Analysis(Detail Level: Application)

103

5.1 Sketches 5 USER INTERFACE

Figure 58: Result Screen for Level 2b Analysis (Detail Level: Component)

104

5 USER INTERFACE 5.2 Workflow

Figure 59: WorkFlow1 for Level 1 Summary Mode

5.2 Workflow

This section describes the navigation within and between the screens of our tool.
Example: Analysis for Level 1 in SUMMARY mode.

Step 1: After clicking on the Analyze menu on the Menu bar of the Main Page, Analysis
Screen will appear with Select the Level and Select the Mode dropdown list. See Figure 59

Step 2: Then user will choose Level 1 as level and SUMMARY as mode from the avail-
able values in the dropdown lists. After the selection of mode, all the necessary elements
required for the execution of the analysis will appear. In this case, Initial Input group box,
Proceed with Analysis button, Cancel button. See Figure 60

Step 3: Then user will choose the path of an apk file for the analysis by clicking on the
Browse button in Initial Input group box. After the path is selected, user will click on the
Proceed with Analysis button.Then analysis will start and Rotating Circle will be shown till the
time analysis is going on. See Figure 61

Step 4: After the analysis is done, Circle will be disappeared and Result Representation
group box will appear with two link buttons: Save only, View Result. See Figure 62

Step 5: If the user clicks Save only link button, our tool will ask the user to choose the
path where the result needs to be saved and upon selection of the path, the result file will be
saved with a message that result saved successfully. Then user will be redirected to the Main
Page automatically. See Figure 62

105

5.2 Workflow 5 USER INTERFACE

Figure 60: WorkFlow2 for Level 1 Summary Mode

106

5 USER INTERFACE 5.2 Workflow

Figure 61: WorkFlow3 for Level 1 Summary Mode

107

5.2 Workflow 5 USER INTERFACE

Figure 62: WorkFlow4 for Level 1 Summary Mode

108

5 USER INTERFACE 5.3 Command Line

Step 6: But if the user clicks on the View Result link button then the Result Screen
of the corresponding analysis will be shown as described in Section 5.1 under GUI descrip-
tions(Level 1 Result Screen). See Figure 51

The work flow steps described above is applicable to all the level of analyses, only the input
elements changes as per the different combination selected in level and mode.

5.3 Command Line

Command Line Configuration Our tool can also be run from Command Line mode with all
the configurations and almost all the features which are available in GUI mode. Basically, in
command line mode we will be running the jar file of our application. So the command for
running the jar file using the command prompt is,

• java -jar <jar-file-names>.jar <ClassName>
Above command will only initialize our tool and ask the user to provide inputs to start the
analysis.

• java -jar <jar-file-names>.jar <ClassName> <inputs>
Above command will initialize our tool and start the analysis as well.
In the above command only <inputs> will vary depending upon the type of analysis the user
wants to perform otherwise the remaining command will be same for all the configurations.

<jar-file-names>.jar represent as our application and its dependent jar files which we are
going to use for developing our tool. For example, a3-analysis.jar;soot.jar

<ClassName> represents the class name(entry point for Command line mode) along with
the full package name. For example,’com.upb.a3-analysis.testclasses.Main’

<Inputs> represents the actual values needed for the analysis to perform. Input parame-
ters differs from for each level of analysis and result representation.

To distinguish between the input parameter, our tool allows distinct prefix keyword for each
parameter. So the user has to provide the keyword first followed by the actual value of the
parameter. With these keywords, our tool can easily differentiate between parameters.

Parameters
1. Level of Analysis: This parameter accepts the name of the level for which the user wants

perform the analysis. The actual value will be provided following the keyword.
Keyword: –l or –level
Example:”–l 1”, for Level 1 analysis
”–l 2a”, for Level 2a analysis
”–l 2b”, for Level 2b analysis

109

5.3 Command Line 5 USER INTERFACE

2. Mode of Analysis: This parameter accepts name of the mode in which the user wants
perform the analysis. The actual value will be provided following the keyword.
Keyword: –m or –mode
Example: ”–m sum”, for SUMMARY mode
”–m comp”, for COMPARISON mode

3. Level specific Mode: This parameter accepts name of the mode specific to the level for
which the user wants perform the analysis. This parameter is required only for Inter-App
level(Level 2b). The actual value will be provided following the keyword.
Keyword: –lm or –levelmode
Example: ”–lm app”, for APP level analysis
”–lm all”, for ALL level analysis

4. Initial Input: This parameter accepts name and path of the initial input file(s) (Apk
file(s)) for which the user wants perform the analysis. The user has to provide the path
first and then the filename. The actual value will be provided following the keyword.
Keyword: –i or –input
Example: ”–i d:\alex: game.apk”
”–i d:\alex: game1.apk,game2.apk..”, only for Level 2b analysis in ALL mode

5. Input for Comparison: This parameter accepts name and path of the file(previously
saved analysis result file) with which the comparison has to be done in COMPARISON
mode. The user has to provide the path first and then the filename. The actual value will
be provided following the keyword.
Keyword: –ci or –compareinput
Example: ”–ci d:\alex: game.extension”

6. Non-Native Apps: This parameter accepts name and path of the file(s) which will create
the environment for the Inter-App(Level 2b) analysis. This can be a set of apk files. For
providing multiple Apk files, all the input files should be kept in one folder, the user
has to provide the path first and then the filename(s). The actual value will be provided
following the keyword.
Keyword: –nn or –nonnative
Example: ”–nn d:\alex: aoe.apk,cs.apk..”

7. Result Representation: This parameter accepts what the user wants to do with the result
that has been generated after the analysis is done. The actual value will be provided
following the keyword.
Keyword: –r or –result
Example: ”–r save”, only save the result
”–r view”, show the results in different ways

8. Result View: This parameter accepts how the results will be shown if the user wants to
view the result. So this parameter will be compulsory if the user chooses to view the
result. The actual value will be provided following the keyword.
Keyword: –v or –view

110

5 USER INTERFACE 5.3 Command Line

Example: ”–v text”, show the results in textual mode
”–v graph” , launch the GUI and show the results in graphical mode

9. Confirmation for Analysis: This parameter will be shown after the comparison message
appears on the screen in case of Level 1 or Level 2a analysis in comparison mode. Then
the user will be asked to enter YES/NO in order to proceed with the analyis or to cancel
the analysis.
Example: Would you like to proceed with the analysis? YES/NO

10. Result filters: These parameters will be shown after the textual result appears on the
screen.The set of filter parameters differs for each level of analysis.

• Level 1 and Level 2b

a) Detail level Filters, These filters will re-arrange the result into different detail
level i.e application level, component level, class level, method level. Only
those option will be shown for which the results are available. By default
application level result will be shown.

b) Permission Filters, These filters will allow the user to categorize between
different set of permissions i.e ALL, Required, May be, Unused, May be
missing, Missing.By default ALL permissions will be shown.

Example Would you like to filter the result? YES/NO
Available filters, Detail Level Filter: a or application, c or component, cl or class,
mt or method and Permission Filter:al or all, req or required, mb or maybe, un or
unused, mbm or maybemiss, mi or Miss
Enter the filters.
Detail Level Filter:
Permission Filter:

After the required filters are entered, result will be re-arranged and shown. Filter
options will be shown to the user till the user chooses YES.If the user chooses NO,
the user will be asked to save the result.

Would you like to save the result? YES/NO

• Level 2a

a) Detail Level Filters, These filters will re-arrange the result into different detail
level i.e Component Flow, Resource Flow, Statement to Statement. By default
Component Flow result will be shown.

Example Would you like to filter the result? YES/NO
Available filters, Detail Level Filter:c or component, res or resource, stm or state-
ment
Enter the filters.
Detail Level Filter:

111

6 PROJECTPLAN

After the required filters are entered, result will be re-arranged and shown. Filter
options will be shown to the user till the user chooses YES.If the user chooses NO,
the user will be asked to save the result.

Would you like to save the result? YES/NO

Note: In Command line, filter for Source and Sink will not be available for Level
2a. As the number of sources and sinks may be high and showing all of them to the
user for choosing will create problem.

6 Projectplan

After Design Phase (from June 1st to July 31st), the project continues with Development
Phase (from August 2015 to February 2016) and ends with Delivery (on March 2016).
The Figure 63 depicts all milestones (internal and external) as well as all sub-phases and the
final delivery. Those sections belows will describe in detail the schedule and the goal of the
Development Phase and the Delivery.

6.1 Development Phase (August 2015 - February 2016)

In general, the Development Phase is divided mainly into five sub-phases with three
external milestones and two internal milestones. This phase starts on the first of August in
2015 and ends on the 28th of February in 2016.

The first sub-phase (Phase 1) is from 1st August to 3rd September. The goals of this phase
are constructing the skeleton (or framework) with the prototypes for running in CMD-Line
mode, creating a pseudo EnhancedInput to process for only the textual result of Level 1.
The framework does not include the ResultStorer/ResultLoader or the Enhancer
component. These components will be implemented in next phases. In addition the constructed
EnhancedInput consists of TestCase based on the result definition of Level 1.

As soon as the Phase 1 has started, the implementation for Level 2a and GUI also need to
start because the workload of Level 2a and the GUI are very high. The implementation for
Level 2a takes 135 days. It finishes at exactly when the Phase 3 finishes. The implementation
for GUI takes 69 days and it is done at the same time with the finish of Phase 2.

The first external milestone (External Milestone 1) with the presentation for the first phase
is ready on the 4th of September. In the first talk, all features already obtained in Phase 1 will
be shown. Additionally, the trouble during the phase as well as feedback should be given for
discussion in the meeting.

112

6 PROJECTPLAN 6.1 Development Phase (August 2015 - February 2016)

 Mo
nt

h

We
ek

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

1
7

18
19

20
2
1

22
23

24
25

26
27

2
8

29
30

31
32

P
h
a
s
e

1

34
 d

ay
s:

 1
st

 A
ug

 -
 3

rd
 S

ep

-
Fr

am
ew

or
k

-
Co

ns
tr

uc
te

d
En

ha
nc

ed
In

pu
t

-
Ba

si
c

le
ve

l
1

-
Ba

si
c

CM
D-

Li
ne

Im
pl

em
en

ta
ti

on
Le

ve
l

2a
13

5d
13

5
 d

ay
s:

 1
st

 A
ug

 -
 1

3t
h

De
c

Im
pl

em
en

ta
ti

on
 U

I
69

d
69

 d
ay

s:
 1

st

Au

g
-

8t
h

Oc
t

E
x
t
e
r
n
a
l

M
i
l
e
s
t
o
n
e

1

1
da

y:
 4

th
 S

ep

 -

 P
re

se
nt

at
io

n
1

P
h
a
s
e

2

34
 d

ay
s:

 5
th

Se

p
-

8t
h

Oc
t

 -

 E
nh

an
ce

r

 -

 A
dv

an
ce

d
le

ve
l

1,
 2

a,
 2

b

 -

 R
es

ul
t-

Lo
ad

in
g&

St
or

in
g

 -

 U
I

I
n
t
e
r
n
a
l

M
i
l
e
s
t
o
n
e

1

De
ad

li
ne

 f
or

Mi

le
st

on
e1

:
8t

h
Oc

t

P
h
a
s
e

3

66

da

ys
:

9t
h

Oc
t

-
13

th
 D

ec

 -

 F
in

is
he

d
le

ve
l

1,
 2

a,
 2

b

 -

 A
ut

om
at

ed
 s

ys
te

mt
es

ts

E
x
t
e
r
n
a
l

M
i
l
e
s
t
o
n
e

2

1
da

y:
 1

4t
h

De
c

 -

 P
re

se
nt

at
io

n
2

P
h
a
s
e

4

48

da

ys
:

15
th

De

c
-

31
st

 J
an

 -

 B
ug

fi
xe

s
(s

ys
te

mt
es

ts
)

 -

 G
ra

ph
ic

al
 r

es
ul

ts

Un
it

te
st

s
18

4
 d

ay
s:

 1
st

Au

g
-

31
st

 J
an

Do
cu

me
nt

at
io

n
59

da

ys
:

1s
t

Ja
n

-
28

th
 F

eb

E
x
t
e
r
n
a
l

M
i
l
e
s
t
o
n
e

3

1
d
ay

:
1s

t
Fe

b

 -

 P
re

se
nt

at
io

n

P
h
a
s
e

5

27
 d

ay
s:

 2
nd

 F
eb

 -
 2

8t
h

Fe
b

 -

 E
va

lu
at

io
n

 -

 F
in

al
 t

oo
l

ve
rs

io
n

 -

 F
in

al
 d

oc
um

en
ta

ti
on

I
n
t
e
r
n
a
l

M
i
l
e
s
t
o
n
e

2

De
ad

li
ne

 f
or

 M
il

es
to

ne
2

:
28

th
 F

eb

D
e
l
i
v
e
r
y

P
h
a
s
e

31
 d

ay
s:

 2
9t

h
Fe

b
-

30
th

 M
ar

D
e
l
i
v
e
r
y

En
d

Pr
oj

ec
t:

 3
0t

h
Ma

r

3
4
 d

1
3
5
 d

6
9
 d

1

3
4
 d

6
6
 d

1

4
8
 d

1

2
7
 d

6
0
 d

3
1
 d

1
8
4
 d

A
u
g

F
e
b

O
c
t

S
e
p

D
e
c

N
o
v

J
a
n

M
a
r

2
0
1
5

2
0
1
6

Fi
gu

re
63

:A
3

Pr
oj

ec
tP

la
n

113

6.1 Development Phase (August 2015 - February 2016) 6 PROJECTPLAN

The second sub-phase (Phase 2) then continues and lasts until the 8th of October. This
phase focuses on the main processing of the application - the Enhancer whose responsibility
is to generate the EnhancedInput from an .apk file. The implementation of SUMMARY
mode corresponding to the three levels (Level 1, 2a and 2b) is carried out in this phase.
In addition, the remaining components - ResultStorer/ResultLoader are also done.
This phase ends with almost all features of GUI which already started at the beginning of
the Development Phase. However the Graphical Result Representation function is left
for the next phase. The end of current phase (Phase 2) is also the deadline for the Internal
Milestone 1.

The third sub-phase (Phase 3) finishes all the implementations left. This phase has ex-
plicitly done the full analysis in SUMMARY and COMPARISON mode of the three levels.
However the result is still only textual on CMD-Line and GUI. Automated System Tests are
carried out also in this phase for all functions of the application. This phase takes 66 days to
finish from the 9th of October to the 13th of December.

The second external milestone (External Milestone 2) takes place on 14th December. The
application with full features is shown in the presentation. It is accepted for some bugs and the
limitation of current implementation will be taken into concern for discussion. All bugs and
limitation will be checked again in the next phase.

The fourth sub-phase (Phase 4) The Graphical Result Representaion function will be
implemented. Concurrently, this phase also performs system tests and bug fixing (if any). This
phase finishes in 48 days from 15th December 2015 to 31st January 2016. Later in the middle
of this phase, the document implementation is started on the 1st of January in 2016.

The UnitTests start from the very beginning of Development Phase (from 1st August
2015). It is performed during the implementation of all features of the application and lasts
until the end of the Phase 4 on 31st January 2016.

The third external milestone (External Milestone 3) shows the complete application with
full functionalities (including the UnitTests). The presentation takes place on the first of
February in 2016.

The last sub-phase (Phase 5) consists of the evaluation of the application and the final
documentation. This phase verifies the application to make sure that it is fully matching
with the requirements in the target-level-agreement document. There are 27 days
for this phase from 2nd to 28th February and it is also the last Internal Milestone for the
Development Phase.

114

6 PROJECTPLAN 6.2 Delivery (March 2016)

6.2 Delivery (March 2016)

From the beginning of March 2016 to the 31st of March, the final version of application as well
as the final document will be delivered to the customers. Then the customer will give a specific
day for final presentation. During this phase, feedback from the customer for the document
will be taken into account. The final day for the whole deliveries is the 31st of March, namely
the end of the project.

115

List of Figures List of Figures

List of Figures

1 Activity Diagram for General Workflow . 3
2 Activity Diagram for Level 1 Analysis . 4
3 Activity Diagram for Level 2a Analysis . 5
4 Activity Diagram Level 2b Analysis . 6
5 Component Diagram of the Android App Analysis Tool 8
6 High Level Sequence Diagram for Level 1 and 2a Analysis 12
7 High Level Sequence Diagram for Level 1 and 2a Analysis - Summary 15
8 High Level Sequence Diagram for Level 1 and 2a Analysis - Comparison . . 17
9 High Level Sequence Diagram for Level 2b Analysis - Summary 20
10 High Level Sequence Diagram for Level 2b Analysis - Comparison 21
11 Phases in Soot; Figure taken from: https://github.com/Sable/soot/wiki/Packs-

and-phases-in-Soot . 23
12 Class Diagram of the Tool Framework . 30
13 Sequence Diagram of the Analysis Framework 31
14 Detail Sequence Diagram of the Analysis Framework 32
15 Class Diagram of the Tool Data Structures 34
16 A3XMLParser Workflow . 37
17 A3XMLParser Class Diagram . 38
18 A3DataStorage Class Diagram . 38
19 Enhancer Class Diagram . 41
20 Enhancer Sequence Diagram . 42
21 Sequence Diagram Showing Executions of the Methods addStatement(...),

addMethod(...), addClass(...) and addComponent(...) . . . 43
22 Summary of the Enhancer’s Function in Form of a Sketch 44
23 State Chart of the Framework Usage for the Client 45
24 State Chart for Retrieving Result Representations from the AnalysisResult 45
25 Level 1 Class Diagram . 48
26 AnalysisFactoryLvl1 Class Diagram 49
27 GraphGeneratorLvl1 Sequence Diagram 50
28 State Chart Showing the Loop while Analyzing Explicit Intents 51
29 AnalyzerLvl1 Sequence Diagram . 53
30 State Chart Reflecting the Method fillUpPermissions() 54
31 Class Diagram for the Level2aFactory 58
32 Class Diagram of the GraphGeneratorLvl2a 60
33 Sequence Diagram for the GraphGeneratorLvl2a 61
34 Sequence Diagram for the NodeLinkerLvl2a 62
35 Class Diagram of the AnalyzerLvl2a 65
36 Extended Data Structure for Level 2a . 67
37 Sequence Diagram for the AnalyzerLvl2a 68

116

List of Figures List of Figures

38 Class Diagram of the AnalysisResultLvl2a 70
39 Class Diagram for Level 2b . 72
40 Sequence Diagram for GraphGeneratorLevel2b 74
41 Sequence Diagram for AnalyzerLevel2b 76
42 Class Diagram for User Interface . 77
43 Sequence Diagram for User Interface - Detail Level1 79
44 Sequence Diagram for User Interface - Detail Level2 82
45 State Chart Diagram for Initial Steps of the User Interface 85
46 GUI Structure . 87
47 Main Page . 87
48 Analysis Screen . 89
49 View Saved Result Screen . 92
50 Result Screen . 93
51 Result Screen for Level 1 Analysis in Summary Mode 95
52 Result Screen for Level 1 Analysis in Comparison Mode 96
53 Result Screen for Level 1 Analysis in Graphical View 97
54 Result Screen for Level 2a Analysis in Summary Mode (Component Flow) . 99
55 Result Screen for Level 2a Analysis in Summary Mode (Resouce Flow) . . . 100
56 Result Screen for Level 2a Analysis in Graphical View (Component Flow) . . 101
57 Result Screen for Level 2b Analysis(Detail Level: Application) 103
58 Result Screen for Level 2b Analysis (Detail Level: Component) 104
59 WorkFlow1 for Level 1 Summary Mode . 105
60 WorkFlow2 for Level 1 Summary Mode . 106
61 WorkFlow3 for Level 1 Summary Mode . 107
62 WorkFlow4 for Level 1 Summary Mode . 108
63 A3 Project Plan . 113

117

	1 Introduction
	2 High-Level Architecture
	2.1 General Workflow of the Tool
	2.2 Component Architecture
	2.3 Interaction between the Components
	2.3.1 Level 1 and 2a
	2.3.2 Level 2b

	3 Soot Framework
	3.1 Soot's Features
	3.2 Implementation Details
	3.2.1 Running Soot
	3.2.2 Creating Entry Point
	3.2.3 Adding own analysis to Soot

	4 Refined Architecture
	4.1 Overall Framework
	4.1.1 Analysis
	4.1.2 Data Structures
	4.1.3 Core Services
	4.1.4 Enhancer
	4.1.5 Usage Protocols
	4.1.6 Software Design Patterns

	4.2 AnalysisProcedure for Level 1
	4.2.1 AnalysisFactoryLvl1
	4.2.2 GraphGeneratorLvl1
	4.2.3 AnalyzerLvl1
	4.2.4 AnalysisResultLvl1

	4.3 AnalysisProcedure for Level 2a
	4.3.1 AnalysisFactoryLvl2a
	4.3.2 GraphGeneratorLvl2a
	4.3.3 AnalyzerLvl2a
	4.3.4 AnalysisResultLvl2a

	4.4 AnalysisProcedure for Level 2b
	4.4.1 AnalysisFactoryLvl2b
	4.4.2 A3AnalysisProcedure
	4.4.3 Enhancer
	4.4.4 GraphGeneratorLvl2b
	4.4.5 AnalyzerLvl2b
	4.4.6 AnalysisResultLvl2b

	4.5 User Interface Structure
	4.5.1 Client
	4.5.2 ClientGUI
	4.5.3 ClientCommandLine
	4.5.4 UI StateChart Diagram

	5 User Interface
	5.1 Sketches
	5.2 Workflow
	5.3 Command Line

	6 Projectplan
	6.1 Development Phase (August 2015 - February 2016)
	6.2 Delivery (March 2016)

	List of Figures

